Five-membered cyclopalladated rings: Cambridge structural database analysis of geometrical parameters and ‘aromatic’ character[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Alessandra Crispini and Mauro Ghedini


Abstract

The relationship between the planarity of five-membered cyclopalladated rings and calculated aromaticity indices has been investigated. Geometrical parameters for 126 crystal structures containing the fragments [P[upper bond 1 start]d(NXCY[upper bond 1 end])A2] (X, Y = C or N; A = any ligand) were obtained from the Cambridge Structural Database. These were classified in terms of planarity by measuring the displacement of the N atom bonded to the Pd from the calculated mean plane formed by the other four atoms. The same classification was performed using the displacement of the Pd atom and the results compared. ‘Aromaticity’ indices for the five-membered cyclopalladated rings, V and HOMA, were also calculated based on experimental bond lengths and typically used in the analysis of five- or six-membered organic heterocycles. The correlation between calculated ‘aromaticity’ indices and planarity of the rings has been shown to be good. The stability and/or reactivity of the five-membered cyclopalladated rings suggested by the sequence of ‘aromaticity’ indices agrees well with the reactivity series of these compounds previously found for ligand-exchange reactions.


References

  1. E. C. Constable, Polyhedron, 1984, 3, 1037 CrossRef CAS; D. W. Evans, G. R. Baker and G. R. Newkome, Coord. Chem. Rev., 1989, 93, 155 CrossRef CAS; A. D. Ryabov, Chem. Rev., 1990, 90, 403 CrossRef CAS; in Perspectives in Coordination Chemistry, eds. A. F. Williams, C. Floriani and A. E. Merbach, VCH, Weinheim, 1992, pp. 271–292 Search PubMed; S. A. Hudson and P. M. Maitlis, Chem. Rev., 1993, 93, 861 Search PubMed.
  2. A. J. Canty, Acc. Chem. Res., 1992, 25, 83 CrossRef CAS.
  3. J. Albert, R. M. Ceder, M. Gomez, J. Granell and J. Sales, Organometallics, 1992, 11, 1536 CrossRef CAS.
  4. C. Navarro-Renninger, I. Lopez-Solera, A. Alvarez-Valdes, J. H. Rodriguez-Ramos, J. R. Masaguer and J. L. Garcia-Ruano, Organometallics, 1993, 12, 4104 CrossRef.
  5. F. H. Allen, J. E. Davies, J. J. Galloy, O. Johnson, O. Kennard, C. F. Macrae, E. M. Mitchell, G. F. Mitchell, J. M. Smith and D. G. Watson, J. Chem. Inf. Comput. Sci., 1991, 31, 187 CrossRef CAS.
  6. A. G. Orpen, Chem. Soc. Rev., 1993, 191 RSC.
  7. CSD User Manual, Cambridge Crystallographic Data Centre, Cambridge, 1992 Search PubMed.
  8. G. W. Snedecor and W. G. Cochran, in Statistical Methods, 7th edn., Iowa State University Press, Ames, IA, 1982 Search PubMed.
  9. C. Altona, H. J. Geise and C. Romers, Tetrahedron, 1968, 24, 13 CrossRef CAS; C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 1972, 94, 8205 CrossRef CAS.
  10. C. W. Bird, Tetrahedron, 1985, 41, 1409 CrossRef CAS; 1986, 42, 89.
  11. W. Gordy, J. Chem. Phys., 1947, 15, 305 CrossRef CAS.
  12. T. M. Krygowsky, J. Chem. Inf. Comput. Sci., 1993, 33, 70 CrossRef CAS; T. M. Krygowsky, A. Ciesielski, C. W. Bird and A. Kotschy, J. Chem. Inf. Comput. Sci., 1995, 35, 203 CrossRef CAS.
  13. P. W. Clark, S. F. Dyke, G. Smith and C. H. L. Kennard, J. Organomet. Chem., 1987, 330, 427 CrossRef CAS.
  14. B. Crociani, T. Boschi, R. Pietropaolo and U. Bellucco, J. Chem. Soc. A, 1970, 531 RSC.
  15. R. M. Ceder, M. Gomez and J. Sales, J. Organomet. Chem., 1989, 361, 391 CrossRef CAS.
  16. J. Albert, M. Gomez, J. Granell, J. Sales and X. Solans, Organometallics, 1990, 9, 1405 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.