Molecular structures of the sixth period metal pentachlorides, MCl5 (M = Ta, W or Re), determined by gas electron diffraction; is Jahn–Teller distortion of WCl5 quenched by spin–orbit coupling?

(Note: The full text of this document is currently only available in the PDF Version )

Knut Faegri Jr., Arne Haaland, Kjell-Gunnar Martinsen, Tor G. Strand, Hans Vidar Volden, Ole Swang, Carlaxel Anderson, Christina Persson, Sandra Bogdanovic and Wolfgang A. Herrmann


Abstract

The molecular structure of TaCl5 has been optimised under D3h symmetry by density-functional theory calculations. Calculation of the molecular force field and vibrational frequencies showed that the optimised structure corresponds to a minimum on the full potential energy surface. Gas electron diffraction data of MCl5 (M = Ta, W or Re), recorded with nozzle temperatures ranging from 130 to 210 °C, showed that WCl5 and ReCl5 are trigonal bipyramidal like TaCl5. Structure refinements based on molecular models of D3h symmetry lead to satisfactory agreement between experimental and calculated intensities for each compound and yield the M–Cl bond distances (ax/eq): Ta 231.3(5)/226.6(4); W 229.1(4)/224.1(5); Re 226.2(12)/223.7(7) pm. Tungsten pentachloride is a d1 compound and might have exhibited dynamic or static Jahn–Teller distortion from D3h symmetry; it has been suggested that such distortion is quenched by strong spin–orbit coupling.


References

  1. C. Pulham, A. Haaland, A. Hammel, K. Rypdal, H. P. Verne and H. V. Volden, Angew. Chem., Int. Ed. Engl., 1992, 31, 1464 CrossRef.
  2. S. K. Kang, H. Tang and T. A. Albright, J. Am. Chem. Soc., 1993, 115, 1971 CrossRef.
  3. K. Hagen, C. J. Holwill, D. A. Rice and J. D. Runnacles, Inorg. Chem., 1992, 31, 4733 CrossRef CAS.
  4. M. Hargittai, in Stereochemical Applications of Gas-Phase Electron Diffraction. Part B. Structural Information on Selected Classes of Compounds, eds. I. Hargittai and M. Hargittai, VCH, Weinheim, 1988, p. 383 Search PubMed.
  5. A. A. Ischenko, T. G. Strand, A. V. Demidov and V. P. Spiridonov, J. Mol. Struct., 1978, 43, 227 CrossRef CAS.
  6. E. J. Jacob, L. Hedberg, K. Hedberg, H. Davis and G. L. Gard, J. Phys. Chem., 1984, 88, 1935 CrossRef CAS.
  7. L. G. Vanquickenborne, A. E. Vinckier and K. Pierloot, Inorg. Chem., 1996, 35, 1305 CrossRef CAS.
  8. K. Fægri, K.-G. Martinsen, T. G. Strand and H. V. Volden, Acta Chem. Scand., 1993, 47, 547 CAS.
  9. Yu. S. Ezhov and A. P. Sarvin, Zh. Strukt. Khim., 1983, 24, 149 Search PubMed.
  10. Amsterdam Density Functional (ADF) Release 1.1.3, Vrije Universiteit, Amsterdam, 1994; E. J. Baerends, D. E. Ellis and P. Ros, Chem. Phys., 1973, 2, 41 Search PubMed; E. J. Baerends, Ph.D. Thesis, Vrije Universiteit, Amsterdam, 1975 CrossRef CAS; W. Ravenek, in Algorithms and Applications of Vector and Parallel Computers, eds. H. J. J. te Riele, Th. J. Dekker and H. A. van de Vorst, Elsevier, Amsterdam, 1987 CrossRef CAS; P. M. Boerrigter, G. te Velde and E. J. Baerends, Int. J. Quantum Chem., 1988, 33, 87 CrossRef CAS.
  11. G. te Velde and E. J. Baerends, J. Comput. Phys., 1992, 99, 84 CrossRef CAS.
  12. J. G. Snijders, E. J. Baerends and P. Vernooijs, At. Data Nucl. Data Tables, 1982, 26, 483 CrossRef; P. Vernooijs, J. G. Snijders and E. J. Baerends, Slater Type Basis Functions for the Whole Periodic System, Internal Report, Vrije Universiteit, Amsterdam, 1981 Search PubMed; J. Krijn and E. J. Baerends, Fit Functions for the HFS-method, Internal Report (in Dutch), Vrije Universiteit, Amsterdam, 1984 Search PubMed.
  13. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  14. A. D. Becke, Phys. Rev. A., 1988, 38, 3098 CrossRef CAS; ACS Symp. Ser., 1989, 394, 165 Search PubMed; Int. J. Quantum Chem., 1989, S23, 599 Search PubMed.
  15. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef; 1986, 34, 7406.
  16. N. Zavalishin, Candidate Dissertation, University of Moscow, 1975; quoted in ref. 5..
  17. I. R. Beattie and G. A. Ozin, J. Chem. Soc. A, 1969, 1691 RSC.
  18. L. Hedberg and I. M. Mills, J. Mol Spectrosc., 1993, 160, 117 CrossRef CAS.
  19. C. Persson and C. Andersson, Inorg. Chim. Acta, 1993, 203, 235 CrossRef CAS.
  20. G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Enke Verlag, Stuttgart, 1978 Search PubMed.
  21. J. R. Canterford and R. Colton, Halides of Second and Third Row Transition Metals, Wiley, New York, 1968 Search PubMed; F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, New York, 5th edn., 1988 Search PubMed.
  22. W. Zeil, J. Haase and L. Wegmann, Z. Instrumentenkd., 1966, 74, 84 Search PubMed; O. Bastiansen, R. Graber and L. Wegmann, Balzers High Vacuum Report, 1969, 25, 1 Search PubMed.
  23. S. Gundersen, T. G. Strand and H. V. Volden, J. Appl. Crystallogr., 1992, 25, 409 CrossRef; J. Mol. Struct., 1995, 346, 121 Search PubMed.
  24. A. W. Ross and M. Fink, J. Chem. Phys., 1986, 86, 6810 CrossRef CAS; A. W. Ross, M. Fink and R. Hilderbrandt, in International Tables for X-Ray Crystallography, ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, vol. C, p. 245 Search PubMed.
  25. G. Gundersen and S. Samdal, KCED12, Internal Report, University of Oslo, 1980.
  26. G. Gundersen, S. Samdal and H. M. Seip, KCED26, Internal Report, University of Oslo, 1980.
  27. B. R. Miller and L. S. Bartell, J. Chem. Phys., 1980, 72, 800 CrossRef CAS.
  28. R. P. Dicky, D. Maurice, R. J. Cave and R. J. Mawhorter, J. Chem. Phys., 1993, 98, 2182 CrossRef.
  29. H. M. Seip, T. G. Strand and R. Stølevik, Chem. Phys. Lett., 1969, 3, 617 CrossRef CAS.
  30. R. F. W. Bader and A. D. Westland, Can. J. Chem., 1961, 39, 2306 CAS.
  31. C. E. Moore, Atomic Energy Levels, National Bureau of Standards, Washington, 1958, vol. 3 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.