Synthesis and characterization of porous chromia-pillared layered titanoniobate[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Yashao Chen, Wenhua Hou, Canxiong Guo, Qijie Yan and Yi Chen


Abstract

Oligomeric chromium(III)-intercalated titanoniobate has been prepared by the intercalation of propylamine into KTiNbO5 followed by substitution of propylammonium for tetramethylammonium and finally refluxing with an aqueous solution of Cr(O2CMe)3. The first chromia-pillared layered titanoniobate was then obtained by calcination of oligomeric chromium(III)-intercalated titanoniobate at 400 °C in a flow of N2. Characterization of chromia-pillared titanoniobate revealed that the material has the porous layered structure with a Brunauer–Emmett–Teller surface area of 122.4 m2 g-1 and an interlayer distance of 13.4 Å as well as a narrow pore-size distribution in the range 30–46 Å. The layered structure can be retained up to 500 °C. However, calcination of the oligomeric chromium(III)-intercalated titanoniobate in air at the same temperature led to a product with a low surface area and a small interlayer space. X-Ray photoelectron studies indicate the existence of different states of chromia in the products obtained in the different atmospheres. The IR spectra of the pyridine-adsorbed material and the ammonia temperature-programmed desorption profile demonstrate the presence of a large amount of acid sites with medium strength on the surface of the new chromia-pillared material. Isopropyl alcohol decomposition confirms the existence of only acid sites in the sample.


References

  1. F. Figueras, Catal. Rev. Sci. Eng., 1988, 30, 457 Search PubMed.
  2. H. Izawa, S. Kikkawa and M. Koizumi, Polyhedron, 1983, 2, 741 CrossRef CAS.
  3. R. M. Lewis, R. A. Van Saten and K. C. Ott, Eur. Pat., 059 756 A2, 1985 Search PubMed.
  4. J. Shabtai, R. Lazar and A. G. Oblad, in New Horizons in Catalysis, eds. T. Seiyama and K. Tanabe, Kodansha-Elsevier, Tokyo, 1980, p. 828 Search PubMed.
  5. S. Cheng and T. Wang, Inorg. Chem., 1988, 28, 1283.
  6. C. P. Poole, jun. and D. S. Iver, Adv. Catal., 1967, 17, 223.
  7. G. W. Brindley and S. Yamanaka, Am. Mineral., 1979, 64, 830 CAS.
  8. T. J. Pinnavaia, M. S. Tzou and S. D. Landau, J. Am. Chem. Soc., 1985, 105, 4783 CrossRef.
  9. P. Maireles-Torres, P. Olivera-Paster, E. Rodriguez-Castellon, A. Jimenez-Lopez and A. A. G. Tomlinson, J. Solid State Chem., 1992, 94, 368 CrossRef.
  10. A. Guerrero-Raiz, I. Rodriguez-Ramos, J. L. G. Fierro, A. Jimenez-Lopez, P. Olivera-Pastor and P. Maireles-Torres, Appl. Catal., A, 1992, 92, 81 CrossRef.
  11. J. Gopalakrishnan, Rev. Solid State Sci., 1988, 1, 515 Search PubMed.
  12. T. Sekine, J. Yoshimura, A. Tanaka, K. Domen, K. Maruya and T. Onishi, Bull. Chem. Soc. Jpn., 1990, 63, 2107 CAS.
  13. W. Hou, J. Ma, Q. Yan and X. Fu, J. Chem. Soc., Chem. Commun., 1993, 1143 Search PubMed.
  14. W. Hou, B. Peng, Q. Yan and X. Fu, Acta Chim. Sin., 1994, 166 Search PubMed.
  15. S. Kikkawa and M. Koizumi, Mater. Res. Bull., 1980, 15, 533 CrossRef CAS.
  16. J.-F. Lambert, Z.-Q. Deng, J.-B. D'Espinose and J. J. Fripiat, J. Colloid Interface Sci., 1989, 132, 337 CrossRef CAS.
  17. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn., Wiley, New York, 1986 Search PubMed.
  18. A. Jimenez-Lopez, J. Maza-Rodriguez, P. Olivera-Pastor, P. Maireles-Torres and E. Rodriguez-Castellon, Clays and Clay Minerals, 1993, 41, 328 Search PubMed.
  19. C. D. Wagner, W. M. Riggs, C. E. Davis, J. F. Moulder and G. E. Muilenberg(Editors), Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Minnesota, 1979 Search PubMed.
  20. Q. Yan, W. Hou and Y. Chen, J. Chem. Soc., Chem. Commun., 1995, 1865 RSC.
  21. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pieratt, J. Rouquerol and T. Siemienewska, Pure Appl. Chem., 1985, 57, 603 CrossRef CAS.
  22. P. Parry, J. Catal., 1963, 2, 371 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.