Michael J. Parkington, T. Anthony Ryan and Kenneth R. Seddon
Carbonyl dibromide reacted with a wide selection of d- and f-block transition-metal oxides to form either the metal bromide or bromide oxide; the reactions are driven by the elimination of carbon dioxide. In a typical reaction the metal oxide was treated with an eight-fold excess of COBr2 in a sealed Carius tube at 125 °C for 10 d (to ensure complete reaction of the metal oxide). As COBr2 and the reaction by-products (CO2, CO and Br2) are all volatile, the desired products were obtained in essentially quantitative yield and a high degree of purity. Under these conditions V2O5, MoO2, Re2O7, Sm2O3 and UO3 were converted into VOBr2, MoO2Br2, ReOBr4, SmBr3 and UOBr3, respectively. This route offers great potential for the preparation of many known bromide derivatives of the transition metals, lanthanides and actinides, in a very convenient manner, and also for the synthesis of new materials. A modified synthesis of carbonyl dibromide was elaborated, and its 17O NMR and electron impact mass spectra are reported for the first time.