Ruthenium-mediated selective activation of a C–H bond. Direct aromatic thiolation in the complexes [RuII{o-SC6H3(R)N[double bond, length as m-dash]NC 5H4N}2] (R = H, Me or Cl)

(Note: The full text of this document is currently only available in the PDF Version )

Bidyut Kumar Santra and Goutam Kumar Lahiri


Abstract

The reaction of the complexes ctc-[RuIIL2Cl2] (L = arylazopyridine, RC6H4N[double bond, length as m-dash]NC5H4N, where R = H, m-Me, p-Me or p-Cl; ctc = cis-trans-cis with respect to chlorides, pyridine and azo nitrogens respectively) with KS2COR′ (R′ = Me, Et, Prn, Bun or CH2Ph) in boiling dimethylformamide afforded [RuII{o-SC6H3(R)N[double bond, length as m-dash]NC 5H4N}2] where the o-carbon atom of the pendant phenyl ring of both ligands L has been selectively and directly thiolated. The newly formed tridentate thiolated ligands are bound in a meridional fashion. When one methyl group is present at the meta position of the pendant phenyl ring of L the reaction resulted in two isomeric complexes due to free rotation of the singly bonded meta-substituted phenyl ring with respect to the azo group. The molecular geometry of the complexes in solution has been determined by 1H NMR spectroscopy. This revealed the presence of an intimate mixture of the two isomers in solution in a 2∶1 ratio. In the visible region the complexes exhibit two metal-to-ligand charge-transfer transitions at ≈700 and ≈560 nm respectively and in the UV region intraligand (π–π*, n–π*) transitions. In acetonitrile solution the complexes exhibit one reversible ruthenium(II) ruthenium(III) oxidation couple near 0.4 V and an irreversible oxidative response near 1 V due to oxidation of the co-ordinated thiol group. Reduction of the co-ordinated azo groups occurs at ca. -0.8 and -1.4 V respectively. Coulometric oxidation of the complexes [RuII{o-SC6H3(R)N[double bond, length as m-dash]NC 5H4N}2] at 0.6 V versus the saturated calomel electrode in dichloromethane produced unstable ruthenium(III) congeners. When R = p-Me, the presence of trivalent ruthenium in the oxidised solution was evidenced by a rhombic EPR spectrum having g1 = 2.359, g2 = 2.300 and g3 = 1.952.


References

  1. E. M. Siegbahn, J. Am. Chem. Soc., 1996, 118, 1487 CrossRef CAS; R. H. Schultz, A. A. Bengali, M. J. Tauber, B. H. Weiller, E. P. Wasserman, K. R. Kyle, C. B. Moore and R. G. Bergman, J. Am. Chem. Soc., 1994, 116, 7369 CrossRef CAS and refs. therein.
  2. R. W. Hay, Bioinorganic Chemistry, Harwood, New York, 1984, p. 165 Search PubMed; Y. M. Torchinsky, Sulfur in Proteins, Pergamon, Oxford, 1981 Search PubMed; B. Jaun, Helv. Chim. Acta, 1990, 73, 2209 Search PubMed; M. Schroder, Encyclopedia of Inorganic Chemistry, ed. R. B. King, Wiley, New York, 1994, vol. 7, p. 3593 Search PubMed; H. Kawaguchi and K. Tatsumi, J. Am. Chem. Soc., 1995, 117, 3885 Search PubMed.
  3. A. W. Myers, W. D. Jones and S. M. McClements, J. Am. Chem. Soc., 1995, 117, 11704 CrossRef CAS; D. A. Lesch, J. W. Richardson, jun., R. A. Jacobson and R. Angelici, J. Am. Chem. Soc., 1984, 106, 2901 CrossRef CAS; R. Angelici, Acc. Chem. Res., 1988, 21, 387 CrossRef CAS; P. G. Jessop, S. J. Retting, C. L. Lee and B. R. James, Inorg. Chem., 1991, 30, 4617 CrossRef CAS; C. Bianchini, P. Frediani, V. Herrera, M. V. Jimenez, A. Meli, L. Rincon, R. S. Delgado and F. Vizza, J. Am. Chem. Soc., 1995, 117, 4333 CrossRef CAS.
  4. B. K. Santra, G. A. Thakur, P. Ghosh, A. Pramanik and G. K. Lahiri, Inorg. Chem., 1996, 35, 3550 CrossRef CAS.
  5. S. Goswami, A. R. Chakravarty and A. Chakravorty, Inorg. Chem., 1981, 20, 2246 CrossRef CAS.
  6. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1963, p. 214 Search PubMed.
  7. M. Haga, E. S. Dodsworth and A. B. P. Lever, Inorg. Chem., 1986, 25, 447 CrossRef CAS; B. K. Ghosh and A. Chakravorty, Coord. Chem. Rev., 1989, 95, 239 CrossRef CAS; E. S. Dodsworth and A. B. P. Lever, Chem. Phys. Lett., 1985, 119, 61 CrossRef CAS; 1986, 124, 152; Y. H. Tse, P. R. Auburn and A. B. P. Lever, Can. J. Chem., 1992, 70, 1849 Search PubMed; N. Bag, A. Pramanik, G. K. Lahiri and A. Chakravorty, Inorg. Chem., 1992, 31, 40 CAS.
  8. G. K. Lahiri, S. Goswami, L. R. Falvello and A. Chakravorty, Inorg. Chem., 1987, 26, 3365 CrossRef CAS.
  9. G. K. Lahiri, S. Bhattacharya, S. Goswami and A. Chakravorty, J. Chem. Soc., Dalton Trans., 1990, 561 RSC.
  10. B. M. Holligan, J. C. Jeffery, M. K. Norgett, E. Schatz and M. D. Ward, J. Chem. Soc., Dalton Trans., 1992, 3345 RSC; G. K. Lahiri, S. Bhattacharya, B. K. Ghosh and A. Chakravorty, Inorg. Chem., 1987, 26, 4324 CrossRef CAS; N. Bag, G. K. Lahiri, S. Bhattacharya, L. R. Falvello and A. Chakravorty, Inorg. Chem., 1988, 27, 4396 CrossRef CAS; P. Ghosh, A. Pramanik, N. Bag, G. K. Lahiri and A. Chakravorty, J. Organomet. Chem., 1993, 454, 273 CrossRef.
  11. A. K. Deb and S. Goswami, J. Chem. Soc., Dalton Trans., 1989, 1635 RSC.
  12. S. Goswami, R. N. Mukherjee and A. Chakravorty, Inorg. Chem., 1983, 22, 2825 CrossRef CAS.
  13. G. A. Thakur, K. Narayanaswamy and G. K. Lahiri, Indian J. Chem., Sect. A, 1996, 35, 379 and refs. therein.
  14. J. D. Gilbert, D. Rose and G. Wilkinson, J. Chem. Soc. A, 1970, 2765 RSC.
  15. A. K. Mahapatra, S. Dutta, S. Goswami, M. Mukherjee, A. K. Mukherjee and A. Chakravorty, Inorg. Chem., 1986, 25, 1715 CrossRef CAS.
  16. G. K. Lahiri, S. Bhattacharya, M. Mukherjee, A. K. Mukherjee and A. Chakravorty, Inorg. Chem., 1987, 26, 3359 CrossRef CAS.
  17. P. Bandyopadhyay, D. Bandyopadhyay, A. Chakravorty, F. A. Cotton, L. R. Falvello and S. Han, J. Am. Chem. Soc., 1983, 105, 6327 CrossRef CAS.
  18. A. Seal and S. Ray, Acta Crystallogr., Sect. C, 1984, 40, 929 CrossRef.
  19. W. M. A. Higgins, P. W. Vogel and W. G. Craig, J. Am. Chem. Soc., 1955, 77, 1864 CrossRef CAS.
  20. D. T. Sawyer and J. L. Roberts, jun., Experimental Electrochemistry for Chemists, Wiley, New York, 1974, p. 167 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.