Theoretical studies of the intramolecular mechanism for the alkoxyphosphazene to alkoxyphosphazane transformation

(Note: The full text of this document is currently only available in the PDF Version )

Stephen W. Doughty, Brian W. Fitzsimmons and Christopher A. Reynolds


Abstract

Semiempirical molecular orbital methods, and non-local density functional methods, have been used to study the minima and transition structures involved in the formation of six-membered ring alkoxycyclophosphazanes. These compounds show a marked conformational preference whereby two methoxy groups are above the ring and one is below (ααβ); the ααα form involving three methoxy groups pointing above the ring has not been observed experimentally. The free-energy calculations predict that the ααα is actually more stable than the ααβ compound, but the transition-structure calculations show that the energy barrier for the formation of the ααα compound is significantly higher than for the ααβ. Calculations involving demethylated compounds indicated that this selectivity arises due to steric effects in the transition structures. Indeed, there is significantly less distortion in the transition structure for the formation of the ααβ than for the ααα compound. Density functional calculations, using the Becke 88 exchange and the Lee–Yang–Parr correlation combination of functionals, were in broad agreement with semiempirical PM3 molecular orbital calculations.


References

  1. M. Grayson and E. J. Griffiths, Top. Phosphorus Chem., 1964 Search PubMed.
  2. B. W. Fitzsimmons, C. Hewlett and R. A. Shaw, J. Chem. Soc., 1964, 4459 RSC.
  3. G. Ansell and G. Bullen, J. Chem. Soc. A, 1968, 3026 RSC.
  4. B. W. Fitzsimmons, C. Hewlett and R. A. Shaw, J. Chem. Soc., 1965, 7432 RSC.
  5. W. T. Ferrar, F. V. Distefano and H. R. Allcock, Macromolecules, 1980, 13, 1345 CrossRef CAS.
  6. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 221 CrossRef CAS.
  7. J. J. P. Stewart, MOPAC 93, QCPE Bull., 1993, 13 Search PubMed.
  8. G. Herzberg, Molecular Spectra and Molecular Structure; Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York, 1945 Search PubMed.
  9. I. H. Williams, Chem. Soc. Rev., 1993, 277 RSC.
  10. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989 Search PubMed.
  11. R. D. Amos, CADPAC 5.1, University Chemical Laboratories, Cambridge.
  12. C. A. Reynolds, Int. J. Quantum Chem., 1995, 56, 677 CrossRef CAS.
  13. C. A. Reynolds, Annu. Rep. Chem. Soc., 1993, 90, 51 Search PubMed.
  14. A. D. Becke, J. Chem. Phys., 1993, 97, 9173 CrossRef CAS; 98, 5648; L. Goodwin and D. R. Salahub, Phys. Rev. A, 1993, 47, R774 Search PubMed; E. Folga and T. Ziegler, J. Am. Chem. Soc., 1993, 115, 5169 CrossRef CAS; I. Papai, J. Mink, R. Fournier and D. R. Salahub, J. Phys. Chem., 1993, 97, 9986 CrossRef CAS.
  15. C. T. Lee, G. Fitzgerald and W. T. Yang, J. Chem. Phys., 1993, 98, 2971 CrossRef CAS.
  16. J. Andzelm, C. Sosa and R. A. Eades, J. Chem. Phys., 1993, 97, 4664 CAS; B. J. Smith, J. Chem. Phys., 1993, 97, 10513 CAS; T. Ziegler, E. Folga and A. Berces, J. Am. Chem. Soc., 1993, 115, 636 CrossRef CAS.
  17. A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS.
  18. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS; B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989, 157, 200 CrossRef CAS.
  19. B. G. Johnson, P. M. W. Gill and J. A. Pople, J. Chem. Phys., 1993, 98, 5612 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.