The design of a new type of very rigid tetradentate ligand

(Note: The full text of this document is currently only available in the PDF Version )

Peter Comba, Bernhard Nuber and Anne Ramlow


Abstract

Molecular mechanics calculations were used to compute the structural properties of a new type of very rigid tetradentate ligand for tetrahedral co-ordination geometries. The calculations indicate that the pendant arms of the disubstituted bispidine (3,7-diazabicyclo[3.3.1]nonane) backbone need to form six-membered chelate rings with the metal to allow a distorted tetrahedral geometry. Smaller rings lead to five- (trigonal bipyramidal) or six-co-ordinate (octahedral) transition-metal compounds. The quality of these predictions is supported by the experimentally determined structure of a cobalt(II) compound of the ligand with co-ordinated pyridine substituents (five-membered chelate rings) and an additional bidentate nitrate ligand. Comparison of the computed structures with the crystal structure of the cobalt(II) compound and with that of a ligand with methyl-protected phenyl substituents supports the rigidity of the bispidine backbone and indicates that rotation of co-ordinating side chains around a C–C single bond is the only flexibility in these ligands.


References

  1. D. J. Cram, T. Kaneda, R. C. Helgeson, S. B. Brown, C. B. Knobler, E. Maverick and K. N. Trueblood, J. Am. Chem. Soc., 1985, 107, 3645 CrossRef CAS.
  2. R. D. Hancock and A. E. Martell, Chem. Rev., 1989, 89, 1875 CrossRef CAS.
  3. H. Irving and R. J. P. Williams, Nature (London), 1948, 162, 746 CrossRef CAS.
  4. S. C. Rawle, A. J. Clarke, P. Moore and N. W. Alcock, J. Chem. Soc., Dalton Trans., 1992, 2755 RSC; N. W. Alcock, A. C. Benniston, P. Moore, G. A. Pike and S. C. Rawle, J. Chem. Soc., Chem. Commun., 1991, 706 RSC; M. L. Turonek, P. Moore, H. J. Clase and N. W. Alcock, J. Chem. Soc., Dalton Trans., 1995, 3659 RSC.
  5. K. D. Karlin and Z. Tyeklár, Bioinorganic Chemistry of Copper, Chapman and Hall, New York, 1993 Search PubMed.
  6. G. D. Hosken and R. D. Hancock, J. Chem. Soc., Chem. Commun., 1994, 1363 RSC.
  7. R. Haller, Arch. Pharm. (Weinheim, Ger.), 1969, 302, 113 Search PubMed; R. Haller and H. Unholzer, Arch. Pharm. (Weinheim, Ger.), 1972, 305, 855 Search PubMed; J. E. Douglass and T. B. Ratliff, J. Org. Chem., 1968, 33, 355 CrossRef CAS; R. Caujolle, P. Castera and A. Lattes, Bull. Soc. Chim. Fr., 1984, 9–10, 413; R. Caujolle, A. Lattes, J. Jaud and J. Galy, Acta Crystallogr., Sect. B, 1981, 37, 1699 CrossRef; C. Ruenitz and E. E. Smissman, J. Org. Chem., 1977, 42, 937 CrossRef CAS; M. J. Fernandez, J. M. Casares and E. Galvez, J. Heterocycl. Chem., 1992, 29, 1797 CAS.
  8. P. Comba, T. W. Hambley and N. Okon, MOMEC, A strain energy minimization package for inorganic compounds, adapted to HYPERCHEM, Altenhoff & Schmitz, Dortmund, 1995.
  9. P. V. Bernhardt and P. Comba, Inorg. Chem., 1992, 31, 2638 CrossRef CAS.
  10. P. Comba, T. W. Hambley and M. Ströhle, Helv. Chim. Acta, 1995, 78, 2042 CrossRef CAS.
  11. E. Keller, SCHAKAL 92, Universität Freiburg, 1992.
  12. P. Comba, in Fundamental Principles of Molecular Modelling, eds. A. Amann, J. C. A. Boeyens and W. Gans, Plenum, New York, 1996, p. 167 Search PubMed.
  13. P. Comba and T. W. Hambley, Molecular Modelling of Inorganic Compounds, VCH, Weinheim, 1995 Search PubMed.
  14. P. Comba, Inorg. Chem., 1989, 28, 426 CrossRef CAS.
  15. A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., 1989, S1 RSC.
  16. U. Holzgrabe and E. Ericyas, Arch. Pharm. (Weinheim, Ger.), 1992, 325, 657 Search PubMed.
  17. R. Haller, Arzneim. Forsch., 1965, 15, 1327 Search PubMed.
  18. A. Sammhammer, U. Holzgrabe and R. Haller, Arch. Pharm. (Weinheim, Ger.), 1989, 322, 551 Search PubMed.
  19. G. M. Sheldrick, SHELXTL PLUS, Release 4.11 (V), University of Göttingen, 1990.
Click here to see how this site uses Cookies. View our privacy policy here.