Zinc(II) N2S2 Schiff-base complexes incorporating pyrazole: syntheses, characterization, tautomeric equilibria and racemization kinetics[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Oren P. Anderson, Agnete la Cour, Matthias Findeisen, Lothar Hennig, Ole Simonsen, Lucille F. Taylor and Hans Toftlund


Abstract

Chiral four-co-ordinate zinc(II) N2S2 complexes with bi- or tetra-dentate Schiff-base ligands have been prepared and their properties investigated by spectroscopic methods. The single-crystal structures have been determined for two different crystalline modifications of bis[4-(2,6-dimethylphenyliminomethyl)-1-methyl-3-phenylpyrazole-5- thiolato-N,S]zinc(II) 1, a triclinic modification (1a) and an orthorhombic one (1b), and for bis(4-isopropyliminomethyl-3-methyl-1-phenylpyrazole-5-thiolato-N ,S)zinc(II) 2. The co-ordination geometry of 1 is similar to that found for the active site of horse liver alcohol dehydrogenase. The asymmetric units in the structures of 1 contain two pseudo-tetrahedral complexes slightly distorted towards trans-planar co-ordination geometries; the angles θ between the N–Zn–S and S′–Zn–N′ planes are 97.0 and 96.8 (modification 1a), 92.5 and 98.6 ° (1b) for the two molecules, respectively. The structure of 2 also reveals a pseudo-tetrahedral geometry and a slight distortion towards a cis-planar co-ordination (θ = 82.63°) typical of MIIN2S2 complexes. The racemization kinetics for the process Δ Λ have been investigated for four complexes by temperature-dependent 1H NMR spectroscopy and the activation parameters derived for complexes 1 [ΔH[hair space] = 80.7 kJ mol-1, ΔS = -2.9 J K-1 mol-1, ΔG (25 °C) = 81.6 kJ mol-1] and 2 [ΔH[hair space] = 67.2 kJ mol-1, ΔS = -57.8 J K-1 mol-1, ΔG (25 °C) = 84.4 kJ mol-1]. The complexes carrying tetradentate ligands do not racemize below 90 °C. The tautomeric equilibria for the protonated pro-ligands and the preferred mesomer of the complexes have been investigated by NMR and UV spectroscopy. The pro-ligands are mainly in the thione form, while the ligands are thiolate-like when co-ordinated to zinc(II). The evolution of the electronic spectra with time, however, reveals the development of thiol- or thiolate-like forms for both pro-ligands and complexes.


References

  1. (a) R. W. Hay, Bioinorganic Chemistry, Ellis Horwood, Chichester, 1987, pp. 12, 80, 85–99 Search PubMed; (b) W. Kaim and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, eds. G. Meyer, A. Nakamura, G. Adachi and K. Poeppelmeier, Wiley, New York, 1994, ch. 12 Search PubMed; (c) S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, CA, 1994, ch. 10 Search PubMed.
  2. H. Eklund, B. Nordström, E. Zeppezauer, G. Söderlund, I. Ohlsson, T. Boiwe, B.-O. Söderberg, O. Tapia, C. I. Bränden and Å. Åkeson, J. Mol. Biol., 1976, 102, 27 CAS.
  3. (a) A. la Cour, M. Findeisen, K. Hansen, R. Hazell, L. Hennig and L. Petersen, unpublished work; (b) A. la Cour, B. Adhikhari, H. Toftlund and A. Hazell, Inorg. Chim. Acta, 1992, 202, 145 CrossRef CAS; (c) A. la Cour, M. Findeisen, C. E. Olesen and O. Simonsen, unpublished work.
  4. G. Schneider, H. Eklund, E. Cedergren-Zeppezauer and M. Zeppezauer, Proc. Natl. Acad. Sci. USA, 1983, 80, 5289 CAS.
  5. (a) J. E. Huheey, Inorganic Chemistry, 3rd edn., Harper and Row, New York, 1983, pp. 258 and 259 Search PubMed; (b) O. Simonsen, T. K. Hansen, J. Becher and S. Larsen, Poster presented at 14th Nordic Meeting of Structural Chemists, University of Helsinki, January 11–13, 1993; (c) C. T. Pedersen, Sulfur Rep., 1980, 1, 1 Search PubMed; (d) C. T. Pedersen, Phosphorus Sulfur Silicon Relat. Elem., 1991, 58, 17 CAS.
  6. (a) A. D. Garnowskii, A. L. Nivorozhkin and V. I. Minkin, Coord. Chem. Rev., 1993, 126, 1 CrossRef CAS and refs. therein; (b) M. J. E. Hewlins, J. Chem. Soc., Dalton Trans., 1975, 429 RSC; (c) R. Cini, A. Cinquantini, P. Orioli and M. Sabat, Inorg. Chim. Acta, 1980, 41, 151 CrossRef CAS.
  7. J. A. Kanters, A. L. Spek, R. Postma, G. C. van Stein and G. van Koten, Acta Crystallogr., Sect. C, 1983, 39, 999 CrossRef; M. Dreher and H. Elias, Z. Naturforsch., Teil B, 1987, 42, 707 CAS; H. Sakiyama, H. Okawa, N. Matsumoto and S. Kida, J. Chem. Soc., Dalton Trans., 1990, 2935 RSC; E. Labisbal, J. Romero, A. de Blas, J. A. Garcia-Vazquez, M. L. Duran, A. Castineiras, A. Sousa and D. E. Fenton, Polyhedron, 1992, 11, 53 CrossRef CAS.
  8. F. H. Allen, O. Kennard, D. G. Watson, L. Bremmer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1 RSC.
  9. (a) H. Toftlund, A. L. Nivorozhkin, A. la Cour, B. Adhikhari, K. S. Murray, G. D. Fallon and L. E. Nivorozhkin, Inorg. Chim. Acta, 1995, 228, 237 CrossRef CAS and refs. therein; (b) R. H. Holm and K. Swaminathan, Inorg. Chem., 1962, 1, 599 CrossRef CAS.
  10. (a) M. Kumar, R. O. Day, G. J. Colpas and M. J. Maroney, J. Am. Chem. Soc., 1989, 111, 5974 CrossRef CAS; (b) M. Kumar, G. J. Colpas, R. O. Day and M. J. Maroney, J. Am. Chem. Soc., 1989, 111, 8323 CrossRef CAS; (c) A. Böttcher, H. Elias, L. Müller and H. Paulus, Angew. Chem., Int. Ed. Engl., 1992, 31, 5; (d) T. Yamamura, M. Tadokoro, M. Hamaguchi and R. Kuroda, Chem. Lett., 1989, 1481 CAS.
  11. (a) R. Shabana, J. B. Rasmussen and S.-O. Lawessen, Tetrahedron, 1981, 37, 1819 CrossRef CAS; (b) L. Casella, M. Gulotti and A. Rockenbauer, J. Chem. Soc., Dalton Trans., 1984, 1033 RSC; (c) L. Casella, M. Gulotti, R. Pagliarin and M. Sisti, J. Chem. Soc., Dalton Trans., 1991, 2527 RSC.
  12. (a) L. E. Konstantinovskii, R. Ya. Olekhnovitch, M. S. Korobov, L. E. Nivorozhkin and V. I. Minkin, Polyhedron, 1991, 10, 771 CrossRef CAS; (b) S. S. Eaton and R. H. Holm, Inorg. Chem., 1971, 10, 1446 CrossRef.
  13. A. la Cour, M. Findeisen, A. Hazell, R. Hazell and G. Zdobinsky, following paper.
  14. G. W. Everett, jun. and R. H. Holm, Inorg. Chem., 1968, 7, 776 CrossRef.
  15. A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd edn., Elsevier, Amsterdam, 1984, pp. 191–193 Search PubMed.
  16. (a) J. Becher, P. H. Olsen, N. A. Knudsen and H. Toftlund, Sulfur Lett., 1986, 4, 175 Search PubMed; (b) J. Becher, H. Toftlund, P. H. Olsen and H. Nissen, Inorg. Chim. Acta, 1985, 103, 167 CrossRef CAS.
  17. (a) C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976; (b) G. M. Sheldrick, SHELXTL, version 5, Siemens Analytical X-Ray Division, Madison, WI, 1994; (c) R. Norrestam and K. Nielsen, Technical University of Denmark, personal communication, 1982; (d) S. R. Hall, H. D. Flack and J. M. Stewart(Editors), XTAL 3.2 Reference Manual, Universities of Western Australia and Maryland, 1992 Search PubMed; (e) H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876 CrossRef; (f) G. Bernardinelli and H. D. Flack, Acta Crystallogr., Sect. A, 1985, 41, 500 CrossRef.
  18. (a) R. J. Abrahams, J. Fisher and P. Loftus, Introduction to NMR Spectroscopy, Wiley, New York, 1988, pp. 194–197 Search PubMed; (b) S. Gutowsky and C. H. Holm, J. Chem. Phys., 1956, 25, 1228 CrossRef CAS; (c) A. Allerhand, H. S. Gutowsky, J. Jonas and R. A. Meinzer, J. Am. Chem. Soc., 1966, 88, 3185 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.