Complexation of Pr3+, Eu3+, Yb3+ and Th4+ ions by calixarene carboxylates

(Note: The full text of this document is currently only available in the PDF Version )

Françoise Arnaud-Neu, Suzane Cremin, Steve Harris, M. Anthony McKervey, Marie-José Schwing-Weill, Pascale Schwinté and Andrew Walker


Abstract

The binding abilities of a series of ionizable calixarenes towards three lanthanides (Pr3+, Eu3+ and Yb3+) and one actinide (Th4+) have been established in methanol by potentiometric measurements. The calixarenes result from progressive substitution of the phenolic hydrogens of p-tert-butylcalix[4]arene by carboxylic acid functions. Calixarene derivatives with mixed carboxylic and ester functional groups, as well as octa-O-carboxymethyl-p-tert-butylcalix[8]arene and the two oxa-derivatives, tetra-O-carboxymethyl-p-tert- butyltetrahomodioxacalix[4]arene and tri-O-carboxymethyl-p-tert- butylhexahomotrioxacalix[3]arene have also been studied. The formation of 1 : 1 species partially protonated [M(HzL)] and totally deprotonated (ML) as well as methoxo species [{ML(OMe)z}] has been established with lanthanides. Additional binuclear complexes and their methoxo forms have been found in some cases. With thorium the mononuclear ML and MHL complexes are mainly formed in addition to the corresponding methoxo species at high pH. For a given ligand, the stability of the complexes increases with the cationic charge: complexes of thorium are more stable than those of lanthanides, which are themselves generally more stable than the corresponding alkaline-earth- and alkali-metal complexes. The predominance of electrostatic interactions in the binding is further confirmed by a linear relationship between the stability of mononuclear complexes (log β110) and the total basicity of the ligands (ΣpKai). The p-tert-butylcalix[8]arene octaacid and the p-tert-butylcalix[4]arene monoacid are respectively the best complexing agents for the lanthanides and thorium. The monoacid derivative shows significant Yb3+/Eu3+ and Th4+/Eu3+ selectivities in appropriate pH ranges.


References

  1. Part 8 F. Arnaud-Neu, G. Barret, S. Fanni, D. Marrs, W. McGregor, M. A. McKervey, M. J. Schwing-Weill, V. Letrogen and S. Wechsler, J. Chem. Soc., Perkin Trans. 2, 1995, 453 Search PubMed.
  2. F. Arnaud-Neu, G. Barrett, S. J. Harris, M. Owens, M. A. McKervey, M. J. Schwing-Weill and P. Schwinte, Inorg. Chem., 1993, 32, 2644 CrossRef CAS; M. A. McKervey, M. J. Schwing-Weill and F. Arnaud-Neu, in Comprehensive Supramolecular Chemistry, ed. J. W. Gokel, Elsevier, Oxford, 1996, vol. 1, pp. 537–603 Search PubMed.
  3. J. Massaux and G. Duyckerts, Anal, Chim. Acta, 1974, 73, 416 CrossRef CAS.
  4. Méthodes d'analyses complexométriques avec les Titriplex, 3rd edn., E. Merck, Darmstadt Search PubMed.
  5. R. Ungaro, A. Pochini and G. D. Andreetti, J. Inclusion Phenom., 1984, 2, 199 CrossRef CAS.
  6. G. Barrett, V. Boehmer, G. Ferguson, J. F. Gallagher, S. J. Harris, R. G. Leonard, M. A. McKervey, M. Owens, M. Tabatabai, A. Vierengel and W. Vogt, J. Chem. Soc., Perkin Trans. 2, 1992, 1595 RSC.
  7. F. Arnaud-Neu, G. Barrett, G. Ferguson, J. F. Gallagher, M. A. McKervey, M. Moran, M. J. Schwing-Weill and P. Schwinte, Supramolecular Chem., 1996, 7, 215 CAS.
  8. B. Dhawan and D. Gutsche, J. Org. Chem., 1983, 48, 1536 CrossRef CAS.
  9. F. Arnaud-Neu, E. Collins, M. Deasy, G. Ferguson, S. J. Harris, B. Kaitner, A. Lough, M. A. McKervey, E. Marques, B. L. Ruhl, M. J. Schwing-Weill and E. M. Seward, J. Am. Chem. Soc., 1989, 111, 8681 CrossRef CAS.
  10. M. Haeringer and J. P. Schwing, Bull. Soc. Chim. Fr., 1967, 708 CAS.
  11. A. Sabbatini, A. Vacca and P. Gans, Talanta, 1974, 21, 53 CrossRef CAS.
  12. V. I. Vetrogon, N. G. Lukyanenko, M. J. Schwing-Weill and F. Arnaud-Neu, Talanta, 1994, 41, 2105 CrossRef CAS.
  13. B. Tremillon, La Chimie en Solvant Non Aqueux, P.U.F., Paris, 1971 Search PubMed.
  14. M. C. Almasio, F. Arnaud-Neu and M. J. Schwing-Weill, Helv. Chim. Acta, 1983, 66, 1296 CrossRef CAS.
  15. C. A. Chang and M. E. Rowland, Inorg. Chem., 1983, 22, 3866 CrossRef CAS.
  16. M. F. Loncin, J. F. Desreux and E. Merciny, Inorg. Chem., 1986, 25, 2646 CrossRef CAS.
  17. F. Arnaud-Neu, Chem. Soc. Rev., 1994, 235 RSC.
  18. G. H. Carey and A. E. Martell, J. Am. Chem. Soc., 1968, 90, 32 CrossRef CAS.
  19. T. A. Bohigian and A. E. Martell, Inorg. Chem., 1965, 4, 1264 CrossRef CAS.
  20. A. S. Gopalan, V. J. Huber, O. Zincircioglu and P. H. Smith, J. Chem. Soc., Chem. Commun., 1992, 1266 RSC.
  21. K. N. Raymond, G. E. Freeman and M. J. Kappel, Inorg. Chim. Acta, 1984, 94, 193 CrossRef CAS; F. L. Weitl and K. N. Raymond, J. Am. Chem. Soc., 1980, 102, 2289 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.