Structure of water under subcritical and supercritical conditions studied by solution X-ray diffraction

(Note: The full text of this document is currently only available in the PDF Version )

Hitoshi Ohtaki, Tamás Radnai and Toshio Yamaguchi


Abstract

Stuctures of water and aqueous electrolyte solutions under sub-and super-critical conditions studied mainly by X-ray diffraction and also by neutron diffraction are reviewed and the experimental results are compared with those reported by using computer simulations. Some Raman spectroscopic data are included for discussing the existence of hydrogen bonds in water at high temperature and high pressures (HTHPs).

The authors propose a classification of supercritical water into three categories: (a) low density water, (b) medium density water, and (c) high density water, because density is a very important thermodynamic quantity to describe properties of sub- and super-critical water.

From changes in the water–water intermolecular distance and the coordination number of water with temperature and pressure, and especially with density at HTHP, the authors conclude that the compact tetrahedral-like water structure is decomposed and long-distance water–water interactions increase with temperature and pressure, and they propose a model for water: under supercritical conditions water consists of small clusters, much smaller aggregates such as oligomers, and even monomeric gas-like water molecules.


References

  1. J. D. Bernal and R. H. Fowler, J. Chem. Phys., 1933, 1, 515 Search PubMed.
  2. E. U. Franck and K. Roth, Discuss. Faraday Soc., 1967, 43, 108 Search PubMed.
  3. C. I. Ratcliffe and D. E. Irish, J. Phys. Chem., 1982, 86, 4897 Search PubMed.
  4. N. C. Holms, W. J. Nellis, W. B. Graham and G. E. Walrafen, Phys. Rev. Lett., 1985, 55, 2433 Search PubMed.
  5. G. E. Walrafen, M. S. Hokmadadi, W.-H. Yang and G. J. Plermarini, J. Phys. Chem., 1988, 92, 4540 Search PubMed.
  6. W. Kohl, H. A. Lindner and E. U. Franck, Ber. Bunsenges. Phys. Chem., 1991, 95, 1586 Search PubMed.
  7. R. W. Impey, M. L. Klein and I. R. McDonald, J. Chem. Phys., 1981, 74, 647 Search PubMed.
  8. A. G. Kalinichev, Int. J. Thermophys., 1986, 7, 887 Search PubMed.
  9. Y. Kataoka, J. Chem. Phys., 1987, 87, 589 Search PubMed.
  10. R. D. Mountain, J. Chem. Phys., 1989, 90, 1866 Search PubMed.
  11. A. G. Kalinichev, Z. Naturforsch. Teil A, 1991, 46, 433 Search PubMed; A. G. Kalinichev, Z. Naturforsch. Teil A, 1992, 47, 992 Search PubMed.
  12. P. T. Cummings, H. D. Cochran, J. M. Simonson, R. E. Mesmer and S. Karaborni, J. Chem. Phys., 1991, 94, 5606 Search PubMed.
  13. Y. Guissani and B. Guillot, J. Chem. Phys., 1993, 98, 8221 Search PubMed.
  14. A. G. Kalinichev and J. D. Bass, Chem. Phys. Lett., 1994, 231, 301 Search PubMed.
  15. Yu. E. Gorbaty and Yu. N. Demianets, Z. Strukt. Khim., 1983, 24, 66 Search PubMed.
  16. Yu. E. Gorbaty and Yu. N. Demianets, Z. Strukt. Khim., 1983, 24, 74 Search PubMed.
  17. G. A. Gaballa and G. W. Neilson, Mol. Phys., 1983, 50, 97 Search PubMed.
  18. A. V. Okhulkov, Yu. N. Demianets and Yu. E. Gorbaty, J. Chem. Phys., 1994, 100, 1578 Search PubMed.
  19. T. Yamaguchi, Y. Tamura, H. Ohtaki, S. Ikeda and M. Misawa, KENS Report, 1986, 6, 125 Search PubMed.
  20. K. Ichikawa, Y. Kameda, T. Yamaguchi, H. Wakita and M. Misawa, Mol. Phys., 1991, 73, 79 Search PubMed.
  21. P. Postorino, R. H. Tromp, M.-A. Ricci, A. K. Soper and G. W. Neilson, Nature, 1993, 366, 668 Search PubMed; R. H. Tromp, P. Postorino, G. W. Neilson, M. A. Ricci and A. K. Soper, J. Chem. Phys., 1994, 101, 6210 Search PubMed; P. Postorino, M. A. Ricci and A. K. Soper, J. Chem. Phys., 1994, 101, 4123 Search PubMed.
  22. M. Ihara, T. Yamaguchi, H. Wakita and S. Matsumoto, Advances in X-ray Analysis (in Japanese), 1994, 25, 49 Search PubMed.
  23. T. Radnai and H. Ohtaki, Mol. Phys., 1996, 87, 103 Search PubMed.
  24. K. Yamanaka, T. Yamaguchi and H. Wakita, J. Chem. Phys., 1994, 101, 9830 Search PubMed.
  25. IAPWS Release on the Skeleton Tables 1985 for the Thermodynamic Properties of Ordinary Water Substance, 1994; Search PubMed; IAPWS Release on the Values of Temperature, Pressure, and Density of Ordinary and Heavy Water Substances at their Respective Critical Points, 1992. Search PubMed.
  26. A. H. Narten, M. D. Danford and H. A. Levy, ORNL-3997, 1966; Search PubMed; A. H. Narten, M. D. Danford and H. A. Levy, Disc. Faraday Soc., 1967, 43, 97 Search PubMed; A. H. Narten, ORNL-4578, 1970.; A. H. Narten and H. A. Levy, J. Chem. Phys., 1971, 55, 2263 Search PubMed.
  27. Yu. E. Gorbaty and A. G. Kalinichev, J. Chem. Phys., 1995, 99, 5336 Search PubMed.
  28. J. J. Pablo, J. M. Prausniz, H. J. Strauch and P. T. Cummings, J. Chem. Phys., 1990, 93, 7355 Search PubMed.
  29. A. A. Chialvo and P. T. Cummings, J. Chem. Phys., 1994, 101, 466 Search PubMed.
  30. P. A. Giguere, J. Raman Spectrosc., 1984, 15, 354 Search PubMed; P. A. Giguere, J. Chem. Phys., 1987, 87, 4835 Search PubMed.
  31. K. Yamanaka, H. Ozono, T. Yamaguchi and H. Wakita, Progress in X-ray Analysis (in Japanese), 1995, 26, 125 Search PubMed.
  32. E. U. Franck, The Physics and Chemistry of Aqueous Ionic Solutions, ed. M.-C. Bellissent-Funel and G. W. Neilson, Reidel, Dordrecht, p. 337, 1987. Search PubMed.
  33. T. Yamaguchi, M. Yamagami, H. Ohzono, H. Wakita and K. Yamanata, Chem. Phys. Lett., 1996, 252, 317 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.