The azomethine ylide strategy for β-lactam synthesis: the structure of the key 1,3-dipolar intermediate

(Note: The full text of this document is currently only available in the PDF Version )

Sarah R. Martel, Denis Planchenault, Richard Wisedale, Timothy Gallagher, Sarah R. Martel, Denis Planchenault and Neil J. Hales


Abstract

The thermolysis of the β-lactam-based oxazolidinone 1 leads to the formation of cycloadducts 2 and evidence is presented for the participation of the carboxylated azomethine ylide 4, rather than 3 (the more conventional product of oxazolidinone fragmentation), as the key 1,3-dipolar intermediate in this process.


References

  1. S. R. Martel, R. Wisedale, T. Gallagher, L. D. Hall, M. F. Mahon, R. H. Bradbury and N. J. Hales, J. Am. Chem. Soc., 1997, 119, 2309 CrossRef CAS.
  2. D. Planchenault, R. Wisedale, T. Gallagher and N. J. Hales, J. Org. Chem., 1997, 62, 3438 CrossRef CAS.
  3. For the key mechanistic work in this area, see R. Grigg, S. Surendrakumar, S. Thianpatanagul and D. Vipond, J. Chem. Soc., Perkin Trans. 1, 1988, 2693 Search PubMed; R. Grigg, J. Idle, P. McMeekin, S. Surendrakumar and D. Vipond, J. Chem. Soc., Perkin Trans. 1, 1988, 2703 RSC.
  4. For other examples of the use of oxazolidinones as precursors to azomethine ylides, see: G. P. Rizzi, J. Org. Chem., 1970, 35, 2069 Search PubMed; A. Eschenmoser, Chem. Soc. Rev., 1976, 5, 377 CrossRef CAS; K. Burger, A. Meffert and S. Bauer, J. Fluorine Chem., 1977, 10, 57 RSC; O. Tsuge, S. Kanemasa, M. Ohe, K. Yorozu, S. Takenaka and K. Ueno, Bull. Chem. Soc. Jpn., 1987, 60, 4067 CrossRef CAS.
  5. J. W. Lown, 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley, New York, 1984, vol. 1, p. 653 Search PubMed; R. Grigg, Chem. Soc. Rev., 1987, 16, 89 Search PubMed; W. H. Pearson, Studies in Natural Products Chemistry, ed. Atta-ur-Rahman, Elsevier, Amsterdam, 1988, vol. 1 RSC; O. Tsuge and S. Kanemasa, Advances in Heterocyclic Chemistry, ed. A. R. Katritzky, Academic Press, San Diego, 1989, vol. 45, p. 231 RSC.
  6. A. G. Brown, D. F. Corbett, J. Goodacre, J. B. Habridge, T. T. Howarth, R. J. Ponsford, I. Stirling and T. J. King, J. Chem. Soc., Perkin Trans. 1, 1984, 635 RSC; T. T. Howarth and I. Stirling, Ger. Offen., 2,655,675 (Chem. Abstr., 1977, 87, 102 313) Search PubMed.
  7. S. Kanemasa, K. Sakamoto and O. Tsuge, Bull. Chem. Soc. Jpn., 1989, 62, 1960 CAS.
  8. P. C. Cherry, C. E. Newall and N. S. Watson, J. Chem. Soc., Chem. Commun., 1978, 469 RSC; P. C. Cherry, C. E. Newall and N. S. Watson, J. Chem. Soc., Chem. Commun., 1979, 663 RSC; C. E. Newall, Recent Advances in the Chemistry of β-Lactam Antibiotics, ed. G. I. Gregory, Royal Society of Chemistry, London, 1981, ch. 13, p. 151 Search PubMed.
  9. T. C. Smale and R. Southgate, J. Chem. Soc., Perkin Trans. 1, 1985, 2235 RSC; S. Wolfe and R. Z. Sterzycki, Can. J. Chem., 1987, 65, 26 CAS; G. M. Barrett and S. Sakadarat, J. Org. Chem., 1990, 55, 5110 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.