Anomalous role of molecular sieves 4A in the preparation of a binaphthol-derived active µ3-oxo titanium catalyst

(Note: The full text of this document is currently only available in the PDF Version )

Masahiro Terada, Yousuke Matsumoto, Yoshiyuki Nakamura and Koichi Mikami


Abstract

The active species of binaphthol-derived titanium catalyst 1, which is used as an efficient catalyst for glyoxylate–ene reactions, is primarily composed of a µ3-oxo (Ti3O) species, for which the molecular sieves 4A employed in the catalyst preparation act as a H2O donor.


References

  1. Advances in Catalytic Processes: Asymmetric Chemical Transformations, ed. M. P. Doyle, JAI Press, Greenwich, Connecticut, 1995, vol. 1 Search PubMed; R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994 Search PubMed; Catalytic Asymmetric Synthesis, ed. I. Ojima, VCH, New York, 1993 Search PubMed; Asymmetric Catalysis, ed. B. Bosnich, Martinus Nijhoff, Dordrecht, 1986 Search PubMed; H. B. Kagan, Comprehensive Organometallic Chemistry, Pergamon, Oxford, 1982, vol. 8 Search PubMed.
  2. (a) K. Mikami, M. Terada and T. Nakai, J. Am. Chem. Soc., 1990, 112, 3949 CrossRef CAS; (b) 1989, 111, 1940; (c) K. Mikami, M. Terada, S. Narisawa and T. Nakai, Org. Synth., 1993, 71, 14 CAS; (d) K. Mikami, Y. Motoyama and M. Terada, J. Am. Chem. Soc., 1994, 116, 2812 CrossRef CAS.
  3. D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1974 Search PubMed; J. M. Thomas and C. R. Theocaris, Modern Synthetic Methods, Springer, Berlin, 1989 Search PubMed; T. Onaka and Y. Izumi, J. Synth. Org. Chem. Jpn., 1989, 47, 233 Search PubMed; A. Dyer, An Introduction to Zeolite Molecular Sieves, Wiley, Chichester, 1988 Search PubMed; M. E. Davis, Acc. Chem. Res., 1993, 26, 111 Search PubMed.
  4. M. G. Finn and K. B. Sharpless, Asymmetric Synthesis, Academic Press, New York, 1985, vol. 5, p. 249 Search PubMed; R. M. Hanson and K. B. Sharpless, J. Org. Chem., 1986, 51, 1922 Search PubMed; Y. Gao, R. M. Hanson, J. M. Klunder, S.-Y. Ko, H. Masamune and K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765 CrossRef CAS Also see: K. Narasaka, N. Iwasawa, M. Inoue, T. Yamada, M. Nakashima and J. Sugimori, J. Am. Chem. Soc., 1989, 111, 5340 CrossRef CAS.
  5. T. J. Boyle, N. W. Eilerts, J. A. Heppert and F. Takusagawa, Organometallics, 1994, 13, 2218 CrossRef CAS.
  6. M. T. Reetz, S.-H. Kyung, C. Bolm and T. Zierke, Chem. Ind., 1986, 824 Search PubMed.
  7. D. R. Burfield, G.-H. Gan and R. H. Smithers, J. Appl. Chem. Biotechnol., 1978, 28, 23 Search PubMed.
  8. G. H. Posner, H. Dai, D. S. Bull, J.-K. Lee, F. Eydoux, Y. Ishihara, W. Welsh, N. Pryor and S. Petr Jr., J. Org. Chem., 1996, 61, 671 CrossRef CAS.
  9. V. W. Day, T. A. Eberspacher, W. G. Klemperer, C. W. Park and F. S. Rosenberg, J. Am. Chem. Soc., 1991, 113, 8190 CrossRef CAS; V. W. Day, T. A. Eberspacher, Y. Chen, J. Hao and W. G. Klemperer, Inorg. Chim. Acta, 1995, 229, 391 CrossRef CAS; J. Blanchard, S. Barboux-Doeuff, J. Maquet and C. Sanchez, New J. Chem., 1995, 19, 929 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.