Some Thoughts on Problems Associated With Various Sampling Media Used for Environmental Monitoring†

(Note: The full text of this document is currently only available in the PDF Version )

Arthur J. Horowitz


Abstract

Modern analytical instrumentation is capable of measuring a variety of trace elements at concentrations down into the single or double digit parts-per-trillion (ng l–1) range. This holds for the three most common sample media currently used in environmental monitoring programs: filtered water, whole-water and separated suspended sediment. Unfortunately, current analytical capabilities have exceeded the current capacity to collect both uncontaminated and representative environmental samples. The success of any trace element monitoring program requires that this issue be both understood and addressed.

The environmental monitoring of trace elements requires the collection of calendar- and event-based dissolved and suspended sediment samples. There are unique problems associated with the collection and chemical analyses of both types of sample media. Over the past 10 years, reported ambient dissolved trace element concentrations have declined. Generally, these decreases do not reflect better water quality, but rather improvements in the procedures used to collect, process, preserve and analyze these samples without contaminating them during these steps. Further, recent studies have shown that the currently accepted operational definition of dissolved constituents (material passing a 0.45 µm membrane filter) is inadequate owing to sampling and processing artifacts. The existence of these artifacts raises questions about the generation of accurate, precise and comparable ‘dissolved’ trace element data.

Suspended sediment and associated trace elements can display marked short- and long-term spatial and temporal variability. This implies that spatially representative samples only can be obtained by generating composites using depth- and width-integrated sampling techniques. Additionally, temporal variations have led to the view that the determination of annual trace element fluxes may require nearly constant (e.g., high-frequency) sampling and subsequent chemical analyses. Ultimately, sampling frequency for flux estimates becomes dependent on the time period of concern (daily, weekly, monthly, yearly) and the amount of acceptable error associated with these estimates.


References

  1. J. C. van Loon, Selected Methods of Trace Metal Analysis: Biological and Environmental Samples, Wiley, New York, 1985, pp. 36–39 Search PubMed.
  2. M. Thompson and J. N. Walsh, Handbook of Inductively Coupled Plasma Spectrometry, Chapman and Hall, New York, 2nd edn., pp. 16–43 and 238–269 Search PubMed.
  3. A. M. Shiller and E. Boyle, Geochim. Cosmoschim. Acta, 1987, 51, 3273 Search PubMed.
  4. H. L. Windom, J. T. Byrd, R. G. Smith, Jr. and H. Feng, Environ. Sci. Technol., 1991, 25, 1137 CAS.
  5. G. Benoit, Environ. Sci. Technol., 1994, 28, 1987 CAS.
  6. J. O. Nriagu, G. Lawson, H. K. Wong and V. Cheam, Environ. Sci. Technol., 1996, 30, 178 CrossRef CAS.
  7. A. J. Horowitz, C. R. Demas, K. K. Fitzgerald, T. L. Miller and D. A. Rickert, US Geological Survey Protocol for the Collection and Processing of Surface-Water Samples for the Subsequent Determination of Inorganic Constituents, US Geological Survey Open-File Report 94-539, US Government Printing Office, Washington, DC 1994 Search PubMed.
  8. A. J. Horowitz, K. R. Lum, J. R. Garbarino, G. E. M. Hall, C. Lemieux and C. R. Demas, Environ. Sci. Technol., 1996, 30, 3398 CAS.
  9. A. J. Horowitz, K. A. Elrick and M. R. Colberg, Water Res., 1992, 26, 753 CrossRef CAS.
  10. A. J. Horowitz, K. R. Lum, J. R. Garbarino, G. E. M. Hall, C. Lemieux and C. R. Demas, Environ. Sci. Technol., 1996, 30, 954 CrossRef CAS.
  11. S. Karlsson, A. Peterson, K. Hakansson and A. Ledin, Sci. Total Environ., 1994, 194, 215 CrossRef CAS.
  12. H. R. Taylor and A. M. Shiller, Environ. Sci. Technol., 1995, 29, 1313 CAS.
  13. A. J. Horowitz, The Use of Suspended Sediments and Associated Trace Elements in Water Quality Studies, IAHS Special Publication No. 4, IAHS Press, Wallingford, 1995 Search PubMed.
  14. C. J. Childress, T. H. Chaney, D. Myers, J. M. Norris and J. Hren, Water Data Collection Activities in Colorado and Ohio: Phase II—Evaluation of 1984 Field and Laboratory Quality Assurance Practices, US Geological Survey Open-File Report 87–33, US Geological Survey, Columbus, OH, 1987, pp. 22–25 Search PubMed.
  15. V. A. Vanoni, Sedimentation Engineering, American Society of Civil Engineers Manuals and Reports on Engineering Practice No. 54, American Society of Civil Engineers, New York, 1977, pp. 154–190 and 317–349 Search PubMed.
  16. U. Forstner and G. T. W. Wittmann, Metal Pollution in the Aquatic Environment, Springer, New York, 1981, pp. 71–196 Search PubMed.
  17. W. Salomons and Forstner, Metals in the Hydrocycle, Springer, New York, 1984, pp. 63–92 Search PubMed.
  18. A. J. Horowitz, A Primer on Sediment-Trace Element Chemistry, Lewis, Chelsea, MI, 2nd edn. 1991 Search PubMed.
  19. H. R. Feltz and J. K. Culbertson, Pestic. Monit. J., 1972, 6, 171 Search PubMed.
  20. Office of Water Data Coordination, National Handbook of Recommended Methods for Water Data Acquisition, US Geological Survey, Reston, VA, 1982, ch. 5, pp. 3-17–3-27 Search PubMed.
  21. A. J. Horowitz, K. A. Elrick and R. P. Hooper, Hydrological Processes, 1989, 3, 347 Search PubMed.
  22. A. J. Horowitz, F. A. Rinella, P. Lamothe, T. L. Miller, T. K. Edwards, R. L. Roche and D. A. Rickert, Environ. Sci. Technol., 1990, 24, 1313 CAS.
  23. D. E. Walling and P. W. Moorhead, Geograf. Ann., 1987, 69A, 47 Search PubMed.
  24. J. Mossa, in Sediment and the Environment, ed. Hadley, R. F., and Ongley, E. D., IAHS Publication No. 184, IAHS Press, Wallingford, 1989, pp. 105–112 Search PubMed.
  25. A. J. de Groot and E. Allersma, in Heavy Metals in the Aquatic Environment, ed. Krenkel, P. A., Pergamon Press, Oxford, 1975, pp. 85–95 Search PubMed.
  26. P. M. Chapman, G. P. Romberg and G. A. Vigers, J. Water Pollut. Control Fed., 1982, 54, 292 Search PubMed.
  27. D. E. Walling, B. W. Webb and J. C. Woodward, in Erosion and Sediment Transport Monitoring Programmes in River Basins, ed. Bogen, J., Walling, D. E., and Day, T. J., IAHS Publication No. 210, IAHS Press, Wallingford, 1992, pp. 279–288 Search PubMed.
  28. R. Alexander, A. Ludtke, K. Fitzgerlad and T. Schertz, Data from Selected US Geological Survey National Stream Water-Quality Monitoring Networks (WQN) on CD-ROM, US Geological Survey Open-File Report 96-337 US Geological Survey, Reston, VA, 1996 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.