Enzymic Determination of Peroxides in Non-aqueous Media

(Note: The full text of this document is currently only available in the PDF Version )

Gerardo Piñeiro Avila and Miguel de la Guardia


Abstract

A fast enzymic flow injection procedure was developed for the determination of peroxides in non-aqueous samples. The biochemical reaction is effected in a flow injection system using a non-covalently immobilized horseradish peroxidase reactor, followed by spectrophotometric monitoring of p-anisidine. The method provides a limit detection of 0.9 µM for hydrogen peroxide, 2.6 µM for tert-butyl hydroperoxide and 2.0 µM for benzoyl peroxide with a maximum sampling frequency of 60 h1. The enzyme reactor exhibits enhanced stability in water-saturated toluene, being stable for more than 4 months, and during this period an average number of 250 reactions can be performed with 1 mg of enzyme (220 purpurogallin units). The method permits the determination of peroxide in olive oil and margarine samples without any chemical pre-treatment or extraction of the sample. An average recovery of 98% was found for the determination of hydrogen peroxide in 12 different types of olive oil samples spiked with known amounts of H2O2, indicating the applicability of the procedure to real sample analysis. The procedure was also applied to the determination of H2O2 in four olive oils and a margarine sample and the results were comparable to those obtained by the reference method.


References

  1. M. Karel, K. Schaich and R. B. Roy, J. Agric. Food Chem., 1975, 23, 159 CrossRef CAS.
  2. T. Miyazawa, M. Kashima and K. Fujimoto, J. Food Sci., 1993, 58, 66 CAS.
  3. W. Korytowski, G. J. Bachowski and A. W. Girotti, Anal. Biochem., 1993, 213, 111 CrossRef CAS.
  4. K. Akasaka, A. Ohata, H. Ohrui and H. Meguro, J. Chromatogr. B, 1995, 665, 37 CrossRef CAS.
  5. C. L. Wang and M. Ashok, Anal. Chem., 1995, 67, 1109 CrossRef CAS.
  6. J. I. Grey, J. Am. Oil Chem. Soc., 1978, 55, 539.
  7. K. Yagui, Methods Enzymol., 1984, 105, 328 CrossRef.
  8. G. L. Cramer, J. F. Miller, R. B. Pendleton and W. E. M. Lands, Anal. Biochem., 1991, 193, 204 CrossRef CAS.
  9. M. Hicks and J. M. Gebicki, Anal. Biochem., 1979, 99, 249 CAS.
  10. Official Methods of Analysis. Food Composition; Additives; Natural Contaminants, Association of Official Analytical Chemists, Washington, DC, 15th edn., 1990, pp. 955–956 Search PubMed.
  11. S. M. Thomas, W. J. Jessup, M. Gebicki and R. T. Dean, Anal. Biochem., 1989, 176, 353 CrossRef CAS.
  12. J. A. García-Mesa, M. D. Luque de Castro and M. Valcárcel, Analyst, 1993, 118, 891 RSC.
  13. R. Cathcart, E. Schwiers and B. N. Ames, Anal. Biochem., 1983, 134, 111 CrossRef CAS.
  14. T. Tatsuma, K. Ariyama and N. Oyama, Anal. Chim. Acta, 1996, 318, 297 CrossRef CAS.
  15. S. Mannino, S. Cosio and M. S. Wang, Anal. Lett., 1994, 27, 299 CAS.
  16. R. L. Heath and A. L. Tapell, Anal. Biochem., 1976, 76, 184 CrossRef CAS.
  17. P. J. Marshall, M. A. Warso and W. E. M. Lands, Anal. Biochem., 1985, 154, 192 CrossRef.
  18. A. Ishimaru and I. Yamazaki, J. Biol. Chem., 1985, 252, 199.
  19. A. M. Klibanov, Trends Biochem. Sci., 1989, 14, 141 CrossRef CAS.
  20. A. Zaks and A. M. Klibanov, Proc. Natl. Acad. Sci. USA, 1985, 82, 3192 CAS.
  21. L. Braco, J. A. Darós and M. de la Guardia, Anal. Chem., 1992, 64, 129 CrossRef.
  22. M. J. Valencia-Gonzáles and M. E. Díaz-García, Ciencia, 1996, 4, 41 Search PubMed.
  23. R. Z. Kazandjian, J. S. Dordick and A. M. Klibanov, Biotechnol. Bioeng., 1986, 28, 417 CAS.
  24. M. de la Guardia, A. E. Morales and J. A. Darós, Span, Pat. Appl., 1990, 90 02666.
Click here to see how this site uses Cookies. View our privacy policy here.