Single Zircon Evaporation Thermal Ionisation Mass Spectrometry: Method and Procedures†

(Note: The full text of this document is currently only available in the PDF Version )

U. S. Klötzli


Abstract

Zircon evaporation thermal ionisation mass spectrometry (TIMS) is used in geochronology to determine absolute 207Pb*/206Pb* ages and Th/U ratios of single zircon crystals. The process involves the breakdown of zircon (ZrSiO4) to porous baddeleyite (ZrO2) along a reaction front which progresses into the interior of the crystal. Evaporation of high quality zircons thus allows us to distinguish between crystal rim (overgrowth) and core, providing precise information about the time of magmatic crystal growth, partial dissolution, and/or metamorphic overgrowth. Derived Th/U ratios complement age data interpretation and provide valuable petrogenetic implications. A double Re-filament ion source is used. The zircon is encased in the evaporation filament and heated step-wise to 1200–1300 °C to strip off unsupported common and radiogenic Pb components. After cleaning, evaporation proceeds in temperature steps of ∼20 °C. The evaporate (SiO2, Pb, REEs, and U from the zircon and Re from the evaporation filament) of each step is deposited for 45 min on the cold ionisation filament and subsequently analysed. Lead isotopic composition is determined using a dynamic secondary electron multiplier ion counter or static Faraday cup data acquisition schemes. Lead ratios are corrected for fractionation using correction factors derived from standard measurements of a 1 ng NBS SRM 982 sample. The precision on 207Pb/206Pb ratios is <1%. Only high temperature steps (>1300 °C) with 206Pb/204Pb > 5000 are used for age calculations. The ages reported (single temperature step, multi-temperature step means) are weighted means calculated from at least 20 measured 207Pb*/206Pb* ratios with 2 standard errors of the mean. Precision of ages is strongly dependent on age range and varies between 0.1 and 10%.


References

  1. Lectures in Isotope Geology, ed. Hunziker, J. C., and Jäger, E., Springer Verlag, Berlin, 1979 Search PubMed.
  2. G. Faure, Principles of Isotope Geology, 2nd edn., Wiley, New York, 1986 Search PubMed.
  3. M. Geyh and H. Schleicher, Absolute Age Determination: Physical and Chemical Dating Methods and Their Application, Springer Verlag, Berlin, 1990 Search PubMed.
  4. J. M. Mattinson, Chem. Geol., 1987, 66, 151 CAS.
  5. R. Steiger, R. A. Bickel and M. Meier, Terra Abstr., 1993, 1–5, 395 Search PubMed.
  6. J. J. Wendt and W. Todt, Terra Abstr., 1991, 3, 507 Search PubMed.
  7. U. Poller, V. Liebetrau and W. Todt, in Proceedings of the V. M. Goldschmidt Conference, Heidelberg, 1996, volume 1, p. 119 Search PubMed.
  8. W. Compston, I. S. Williams and S. W. Clement, in Proceedings of the 30th American Society of Mass Spectrometry Conference, 1982, p. 593 Search PubMed.
  9. M. Wiedenbeck and J. N. Goswami, Geochim. Cosmochim Acta, 1994, 58, 2135 CrossRef CAS.
  10. S. E. Jackson, H. P. Longerich, I. Horn and G. R. Dunning, in Proceedings of the V. M. Goldschmidt Conference, Heidelberg, 1996, vol. 1, p. 283 Search PubMed.
  11. T. Hirata and R. W. Nesbitt, Geochim. Cosmochim. Acta, 1995, 59, 2491 CrossRef CAS.
  12. C. Kosztolanyi, Compt. Rend. Acad Sci., 1965, 261, 5849 Search PubMed.
  13. L. V. Sunin and V. I. Malyshev, Geochem. Int., 1983, 20, 34 Search PubMed.
  14. B. Kober, Contrib. Mineral. Petrol., 1997, 93, 482 CrossRef.
  15. R. V. Gentry, T. J. Sworski, H. S. McKown, R. E. Eby and W. H. Christie, Science, 1982, 216, 296.
  16. B. Kober, Contrib. Mineral. Petrol, 1996, 96, 63 CrossRef.
  17. R. H. Steiger and E. Jäger, Earth Planet. Sci. Lett., 1977, 36, 359 CrossRef CAS.
  18. U. S. Klötzli, Chem. Geol., 1997, submitted for publication Search PubMed.
  19. K. M. Ansdell and T. K. Kyser, Am. Min., 1993, 78, 36 Search PubMed.
  20. J. C. Roddick and H. J. Chapman, EOS, Trans. Am. Geophys. Union, 1991, 72, 531.
  21. J. C. Roddick, USGS Circular, 1994, 1107, 269 Search PubMed.
  22. U. S. Klötzli and R. R. Parrish, Mineral. Petrol., 1996, 58, 197 Search PubMed.
  23. A. E. Cameron, D. E. Smith and R. L. Walker, Anal. Chem., 1969, 41, 525 CrossRef CAS.
  24. T. E. Krogh, Geochim. Cosmochim. Acta, 1982, 46, 637 CrossRef CAS.
  25. U. S. Klötzli, Mitt. Österr. Miner. Ges., 1994, submitted for publication Search PubMed.
  26. U. S. Klötzli, Mitt. Österr. Miner. Ges., 1993, 138, 123 Search PubMed.
  27. G. R. Tilton, J. Geophys. Res., 1960, 65, 2933 CAS.
  28. G. I. Shestakov, Geochim. Int., 1972, 9, 801 Search PubMed.
  29. E. Klötzli-Chowanetz, U. S. Klötzli and F. Koller, Schw. Miner. Petrol. Mitt., 1997, in the press Search PubMed.
  30. K. M. Ansdell and T. K. Kyser, Geology, 1991, 19, 518 CrossRef CAS.
  31. W. Todt, R. A. Cliff, A. Hanser and A. W. Hofmann, Geophys. Monograph, 1996, 95, 429 Search PubMed.
  32. J. S. Stacey and J. D. Kramers, Earth Planet. Sci. Lett., 1975, 26, 207 CrossRef CAS.
  33. U. S. Klötzli, F. Koller, S. Scharbert and V. Höck, Chem. Geol., 1997, submitted for publication Search PubMed.
  34. D. York, Earth Planet. Sci. Lett., 1969, 5, 320 CAS.
  35. K. R. Ludwig, Earth Planet. Sci. Lett., 1980, 46, 212 CrossRef CAS.
  36. J. C. Roddick, W. D. Loveridge and R. R. Parrish, Chem. Geol., 1987, 66, 111 CAS.
  37. K. R. Ludwig, USGS Open-file Report, 1992, 91–445 Search PubMed.
  38. A. Kröner and A. M. C. Sengör, Geology, 1990, 18, 1186 CrossRef.
  39. A. Kröner, W. Todt, I. M. Hussein, M. Mansour and A. A. Rashwan, Precambrian Res., 1992, 59, 15 CrossRef.
  40. B. Müller, U. S. Klötzli and M. Flisch, Geol. Rundschau, 1995, 84, 457 Search PubMed.
  41. P. Peindl and V. Höck, Terra Abstr., 1993, 1/5, 392 Search PubMed.
  42. F. Bernhard, U. S. Klötzli, G. Hoinkes and M. Thöni, Mineral. Petrol., 1996, 58, 171 Search PubMed.
  43. S. Richter, U. Ott and F. Begemann, Int. J. Mass Spec. Ion. Proc., 1994, 136, 91 Search PubMed.
  44. H. J. Laue, A. Tegtmeyer and M. Wegener, Spectromat Inf. Sheet, 1995, 1 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.