Effect of Aromatic Solvents Dissolved in an Aqueous Phase on Ion-pair Solid-phase Extraction

(Note: The full text of this document is currently only available in the PDF Version )

Shigeru Taguchi


Abstract

The effect of aromatic solvents dissolved in an aqueous phase at the 103 mol dm3 level on the distribution of an ion pair between octadecylsilane (ODS)-modified silica gel and cellulose nitrate was studied systematically. Bis[2-(5- chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) ion and dodecanesulfonate ion were the cation (C+) and anion (A) studied. The extent of distribution was expressed in terms of the ion-pair extraction constant, Kex, which is defined as Kex = [C+·A]s/[C+][A], where the subscript s denotes the solid phase and no subscript the aqueous phase. In the ODS–silica gel system, nitrobenzene (NB), p-methylnitrobenzene (p-MNB), p-ethylnitrobenzene (p-ENB) and o-, m- and p-xylene enhanced the Kex value by more than two orders of magnitude. Other aromatic solvents such as toluene, chlorobenzene and benzene also enhanced Kex. Non-aromatic solvents, such as chloroform, dichloromethane and octan-2-ol had no effect on the extraction. The solvent effect cannot be described in terms of a model of ion-pair solvent extraction. The effect was interpreted through mutual interactions of key constituents of the solid phase, organic solvent and ion pair. The key structual fragments present in an effective solvent are a phenyl group and nitro and alkyl groups on the phenyl group. In the proposed model, the alkyl group on the phenyl group interacts with the octadecyl group on the ODS–silica gel through a hydrophobic force, and the negatively polarized nitro group and/or π electrons in the benzene ring of the solvent adsorbed on the ODS interact with the ion pair through electrostatic forces. In the cellulose nitrate system, the solvent effects were small even in the case of NB, p-MNB and p-ENB. The effect must be saturated by the nitro group originally present in the matrix of cellulose nitrate.


References

  1. S. Taguchi, E. Ito-oka and K. Goto, Bunseki Kagaku, 1984, 33, 453 CAS.
  2. S. Taguchi and K. Goto, in Preconcentration Techniques for Trace Elements, ed. Alfassi, Z. B., and Wai, C. M., CRC Press, Boca Raton, FL, 1992, p. 427 Search PubMed.
  3. K. Goto and S. Taguchi, Anal. Sci., 1993, 9, 1 CAS.
  4. S. Taguchi, I. Kasahara and N. Hata, Bunseki Kagaku, 1995, 44, 505 CAS.
  5. C. Matsubara, M. Takahashi and K. Takamura, Yakugaku Zasshi, 1985, 105, 1155 Search PubMed.
  6. M. Kan, T. Nasu and M. Taga, Anal. Sci., 1989, 5, 707 CAS.
  7. S. Taguchi, T. Inaba, M. Nishio, N. Hata, I. Kasahara and K. Goto, Analyst, 1989, 114, 489 RSC.
  8. S. Taguchi, K. Nakayama, N. Hata, I. Kasahara and K. Goto, Analyst, 1994, 119, 135 RSC.
  9. S. Taguchi, K. Takayoshi, Y. Yotsu and L. Kasahara, Analyst, 1996, 121, 1621 RSC.
  10. S. Taguchi, T. Goki, N. Hata, I. Kasahara and K. Goto, Bunseki Kagaku, 1995, 44, 307 CAS.
  11. D. S. Seibert and C. F. Poole, Chromatographia, 1995, 41, 51 CAS.
  12. S. K. Poole and C. F. Poole, Analyst, 1995, 120, 1733 RSC.
  13. S. Taguchi, I. Kasahara, Y. Fukushima and K. Goto, Talanta, 1981, 28, 616 CrossRef CAS.
  14. C. Reichardt, Solvent Effects in Organic Chemistry, Verlag Chemie, Weinheim, 1979 Search PubMed.
  15. S. Taguchi, K. Nakamura, T. Hiraide and K. Goto, Bunseki Kagaku, 1982, 31, 548 CAS.
  16. S. Motomizu, Bunseki Kagaku, 1989, 38, 147 CAS.
  17. N. Tanaka, Y. Tokuda, K. Iwaguchi and M. Arai, J. Chromatogr., 1982, 239, 761 CrossRef CAS.
  18. M. A. Petti, T. J. Shepodd, R. E. Barrans, Jr. and D. A. Dougherty, J. Am. Chem. Soc., 1988, 110, 6825 CrossRef CAS.
  19. D. A. Dougherty, Science, 1996, 271, 163 CrossRef CAS.
  20. S. Taguchi, Y. Yotsu and I. Kasahara, Anal. Sci., 1997, 13, 505 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.