Comparison of the Gold Reduction and Stripping Processes at Platinum, Rhodium, Iridium, Gold and Glassy Carbon Micro- and Macrodisk Electrodes

(Note: The full text of this document is currently only available in the PDF Version )

Alan M. Bond, Steven Kratsis, Alan M. Bond and Shelly Mitchell and Jan Mocak


Abstract

The gold AuIII + 3e → Au0 reduction and Au0 → AuIII + 3e oxidation stripping processes in dilute aqua regia electrolyte (0.1 M HCl + 0.32 M HNO3) were examined at platinum, rhodium, iridium, gold and glassy carbon disk electrodes. After ascertaining that the preferred material was platinum, the effect of electrode size was evaluated by using nine different platinum disk electrodes having diameters ranging from 2 to 2000 µm. The optimum analytical response was obtained with a 50 µm diameter platinum disk electrode. With this electrode diameter, a sharp symmetrical gold stripping peak was obtained and the deposition process occurred predominantly under conditions of radial diffusion so that stirring of the solution was not required. In contrast, larger sized platinum electrodes produced a broader, asymmetric stripping response for the gold oxidation peak, whereas electrodes of smaller diameter provided poorer signal-to-noise ratios. The limit of detection and limit of quantification were calculated to be 4.4 × 107M (86 ppb) and 13.1 × 107M (258 ppb), respectively, at the 50 µm diameter platinum disk electrode under conditions of linear sweep stripping voltammetry at a scan rate of 200 mV s1 and a 140 s deposition time. The optimum electrode gave a very well defined gold oxidation signal with negligible background current when applied to the determination of gold in a gold ore sample.


References

  1. Y. B. Qu, Analyst, 1996, 121, 139 RSC.
  2. I. Turyan and D. Mandler, Anal. Chem., 1993, 65, 2089 CrossRef CAS.
  3. M. Lintern, A. Mann and D. Longman, Anal. Chim. Acta, 1988, 209, 193 CrossRef CAS.
  4. A. A. Kaplin, V. M. Pichugina and O. G. Filichkina, Zavod. Lab., 1988, 54, 4 Search PubMed.
  5. G. E. M. Hall and J. E. Vaive, Chem. Geol., 1992, 102, 41 CrossRef CAS.
  6. K. Jakubec and Z. Sir, Anal. Chim. Acta, 1985, 172, 359 CrossRef CAS.
  7. Kh. Z. Brainina, T. D. Gornostaeva and V. A. Pronin, Anal. Chem. (USSR), 1979, 34, 831 Search PubMed; Zh. Anal. Khim., 1979, 34, 1081 Search PubMed.
  8. T. D. Gornostaeva and V. A. Pronin, Anal. Chem. (USSR), 1971, 26, 1549 Search PubMed; Zh. Anal. Khim., 1971, 26, 1736 Search PubMed.
  9. P. L. Larkins, Anal. Chim. Acta, 1985, 173, 77 CrossRef CAS.
  10. M. Koppenol, J. B. Cooper and A. M. Bond, Am. Lab., 1994, 26, July, 25 Search PubMed.
  11. J. Mocak, A. M. Bond, S. Mitchell and G. Scollary, Pure Appl. Chem., 1997, 69, 297 CrossRef CAS.
  12. B. S. Bruk, M. I. Pozina and E. I. Rozenfeld, Anal. Chem. (USSR), 1979, 34, 842 Search PubMed; Zh. Anal. Khim., 1979, 34, 1095 Search PubMed.
  13. A. J. Bard, Encyclopedia of Electrochemistry of the Elements, Marcel Dekker, New York, 1976, vol. 6, p. 232 Search PubMed.
  14. J. Llopis, Catal. Rev., 1968, 2, 161 Search PubMed.
  15. L. N. Vasileva and T. A. Koroleva, Anal. Chem. (USSR), 1973, 28, 1875 Search PubMed; Zh. Anal. Khim., 1973, 28, 2107 Search PubMed.
  16. R. N. McCreery, in Electroanalytical Chemistry. A Series of Advances, ed. Bard, A. J., Marcel Dekker, New York, 1991, vol. 17, p. 259 Search PubMed.
  17. R. E. Panzer and P. R. Elving, Electrochim. Acta, 1975, 20, 635 CrossRef CAS.
  18. H. Huiliang, D. Jagner and L. Renman, Anal. Chim. Acta, 1988, 208, 301 CrossRef CAS.
  19. R. Alexander, B. Kinsella and A. Middleton, J. Electroanal. Chem., 1978, 93, 19 CrossRef CAS.
  20. Z. Gao, P. Li, S. Dong and Z. Zhao, Anal. Chim. Acta, 1990, 232, 367 CrossRef CAS.
  21. A. M. Bond, Analyst, 1994, 119(11), 1R RSC.
  22. Kh. Z. Brainina and A. M. Bond, Anal. Chem., 1995, 67, 2586 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.