Determination of Selenium by Atomic Absorption Spectrometry With Simultaneous Retention of Selenium(IV) and Tetrahydroborate(III) on an Anion-exchange Resin Followed by Flow Injection Hydride Generation From the Solid Phase

(Note: The full text of this document is currently only available in the PDF Version )

Pablo E. Carrero and Julian F. Tyson


Abstract

Selenium(IV) and tetrahydroborate(III) (borohydride) were simultaneously retained on a strong anion-exchange resin in a packed column. Hydrogen selenide was generated by passage of an injected zone of hydrochloric acid with subsequent detection by AAS with quartz tube atomization. The limits of detection, defined as the concentration giving a signal equal to 3s of the blank, were 0.24, 0.15 and 0.12 µg l-1 of Se for 1, 2 and 3 min preconcentration at a sample flow rate of 3 ml min-1, respectively. The precision of the procedure, expressed as the RSD of 10 successive determinations of 5, 10, and 20 µg l-1 of Se, varied from 0.41 to 1.32, 0.24 to 0.81 and 0.18 to 0.61% for 1, 2 and 3 min preconcentration, respectively. The system was used for the determination of selenium in river, lake and tap water matrices. No appreciable matrix effects were observed and the system was calibrated with aqueous solutions of a pure selenium salt (Na2SeO3). The recoveries of spikes (0.5, 2, and 10 µg l-1 of Se) added to the water samples ranged from 96.0 to 102.0, 96.0 to 107.0 and 98.9 to 108% for river, lake and tap water, respectively.


References

  1. T. Nakahara, Spectrochim. Acta Rev., 1991, 14, 95 Search PubMed.
  2. R. G. Godden and D. R. Thomerson, Analyst, 1980, 105, 1137 RSC.
  3. C. H. Branch and D. Hutchison, Analyst, 1985, 110, 163 RSC.
  4. J. Agterdenbos and D. Bax, Fresenius' Z. Anal. Chem., 1986, 323, 783 Search PubMed.
  5. S. Tesfalidet and K. Irgum, Anal. Chem., 1989, 61, 2079 CrossRef CAS.
  6. H. Narasaki, Y. Kato and H. Kimura, Anal. Sci., 1992, 8, 893 CrossRef CAS.
  7. J. Y. Cao and H. Narasaki, Bunseki Kagaku, 1994, 43, 169 CAS.
  8. S. Tesfalidet and K. Irgum, Fresenius' J. Anal. Chem., 1991, 341, 532 CrossRef CAS.
  9. A. Brockmann, C. Nonn and A. Golloch, J. Anal. At. Spectrom., 1993, 8, 397 RSC.
  10. Y. Lin, X. Wang, D. Yuan, P. Yang, B. Huang and Z. Zhuang, J. Anal. At. Spectrom., 1992, 7, 287 RSC.
  11. W.-W. Ding and R. E. Sturgeon, J. Anal. At. Spectrom., 1996, 11, 225 RSC.
  12. J. S. Blais, G. M. Momplaisir and W. D. Marshall, Anal. Chem., 1990, 62, 1161 CrossRef CAS.
  13. A. G. Howard, J. Anal. At. Spectrom., 1997, 12, 267 RSC.
  14. J. F. Tyson, N. G. Sundin, C. P. Hanna and S. A. McIntosh, Spectrochim. Acta Part B, in the press Search PubMed.
  15. D. B. Hatfield, Anal. Chem., 1987, 59, 1887 CrossRef CAS.
  16. S. Greenfield, M. S. Salman, M. Thomsen and J. F. Tyson, J. Anal. At. Spectrom., 1989, 4, 55 RSC.
  17. J. C. Miller and J. N. Miller, Statistics for Analytical Chemistry, 3rd edn, Ellis Horwood, Chichester, 1993, pp. 185–187 Search PubMed.
  18. G. A. Cutter, Anal. Chim. Acta, 1978, 98, 59 CrossRef CAS.
  19. C. I. Measures and J. D. Burton, Nature (London), 1978, 273, 293 CAS.
  20. Q. Yu, G. Q. Liu and Q. Jin, Talanta, 1983, 30, 265 CrossRef CAS.
  21. G. A. Cutter, Anal. Chim. Acta, 1983, 149, 391 CrossRef CAS.
  22. H. Robberecht and R. Van Grieken, Talanta, 1982, 29, 823 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.