Use of Stopped-flow Fluoroimmunoassay in Pesticide Determination

(Note: The full text of this document is currently only available in the PDF Version )

Evgenia G. Matveeva, M. Paz Aguilar-Caballos, Sergei A. Eremin, Agustina Gómez-Hens and Dolores Pérez-Bendito


Abstract

Stopped-flow fluoroimmunoassay was applied to pesticide detection in foods. For this purpose, a homogeneous immunoassay was developed for the determination of 2,4-dichlorophenoxyacetic acid (2,4-D) in orange and grape juice which is based on the measurement of the initial rate of the reaction between the tracer (fluorescein-labelled 2,4-D) and the antibody. Kinetic methodology avoids the potential interference of the sample matrix, which affects the fluorescence signal obtained at or close to equilibrium. The use of the stopped-flow mixing technique allows analytical data to be obtained automatically and in a few seconds so that the method can be easily applied to routine analysis. The dynamic range of the calibration graph is 10–400 ng ml-1 and the relative standard deviation is less than 3%. The analytical recoveries obtained by applying the method to orange and grape juice samples ranged from 91.3 to 102.5%.


References

  1. J. H. Rittenburg, Development and Application of Immunoassay for Food Analysis, Elsevier Applied Science, London, 1990 Search PubMed.
  2. J. M. Van Emon and R. O. Mumma, Immunochemical Methods for Environmental Analysis, American Chemical Society, Washington, DC, 1990 Search PubMed.
  3. A. Gaikwad, A. Gómez-Hens and D. Pérez-Bendito, Anal. Chim. Acta, 1993, 280, 129 CrossRef CAS.
  4. D. Pérez-Bendito, A. Gómez-Hens and A. Gaikward, Clin. Chem., 1994, 40, 1489 CAS.
  5. S. K. Hoar, A. Blair, F. F. Holmes, C. D. Boysen, R. J. Robel, R. Hoover and J. F. Fraumeni, J. Am. Med. Assoc., 1986, 256, 1141 Search PubMed.
  6. R. E. Cline, G. D. Todd, D. L. Ashley, J. Grainger, J. M. McCraw, C. C. Alley and R. H. Hill, J. Chromatogr. Sci., 1990, 28, 167 CAS.
  7. H. B. Lee, T. E. Peart, J. M. Carron and H. Tse, J. Assoc. Off. Anal. Chem., 1991, 74, 835 Search PubMed.
  8. S. Butz, Th. Heberer and H.-J. Stan, J. Chromatogr. A, 1994, 677, 63 CrossRef CAS.
  9. M. Franek, V. Kolar, M. Granatova and Z. Nevorankova, J. Agric. Food Chem., 1994, 42, 1369 CrossRef CAS.
  10. S. A. Eremin, in ACS Symposium Series No. 586, Immunoanalysis of Agrochemicals: Emerging Technologies, eds. Nelson, J. O., Karu, A. E., and Wong, R., American Chemical Society, Washington, DC, 1995, p. 223 Search PubMed.
  11. G. L. Long and J. D. Winefordner, Anal. Chem., 1983, 55, 712A CrossRef CAS.
  12. Y. Mechref and Z. El Rassi, Anal. Chem., 1996, 68, 1771 CrossRef CAS.
  13. M. Knutsson, G. Nilve, L. Mathiasson and J.-A. Jonsson, J. Agric. Food Chem., 1992, 40, 2413 CrossRef CAS.
  14. S. A. Eremin, B. Laassis and J.-J. Aaron, Talanta, 1996, 43, 295 CrossRef CAS.
  15. M. Jung and W. C. Brumley, J. Chromatogr. A, 1995, 717, 299 CrossRef CAS.
  16. C. Wittmann, F. F. Bier, S. A. Eremin and R. D. Schmid, J. Agric. Food Chem., 1996, 44, 343 CrossRef CAS.
  17. F. F. Bier, E. Ehrentreich-Forster, C. G. Bauer and F. W. Scheller, Fresenius' J. Anal. Chem., 1996, 354, 861 CAS.
  18. A. Dzgoev, M. Mecklenburg, P.-O. Larsson and B. Danielsson, Anal. Chem., 1996, 68, 3364 CrossRef CAS.
  19. E. G. Matveeva, N. S. Melik-Nubarov, P. Miethe and A. V. Levashov, Anal. Biochem., 1996, 234, 13 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.