Visualisation of Confidence in Two-factor Designs Where Model, Replication and Star Points are Varied

(Note: The full text of this document is currently only available in the PDF Version )

Pedro W. Araujo and Richard G. Brereton


Abstract

Confidence in predictions over an experimental domain can be calculated using the known experimental error and a function that relates to the shape of the confidence bands, often called leverage. In this paper, leverage is calculated for two-factor designs based on the central composite design, changing the nature of the model, the position of the star points and the number of replicates in the centre. The shapes of the graphs of leverage are presented. Several conclusions can be deduced, for example, for many common arrangements of experiments, such as the case where three replicates are taken in the centre; confidence is not highest in the centre of experimentation.


References

  1. G. E. P. Box and K. B. Wilson, J. R. Stat. Soc., 1951, 13, 1 Search PubMed.
  2. W. G. Cochran and G. M. Cox, Experimental Design, Wiley, New York, 1957 Search PubMed.
  3. G. E. P. Box, W. G. Hunter and J. S. Hunter, Statistics for Experimenters, Wiley, New York, 1978 Search PubMed.
  4. O. L. Davies, The Design and Analysis of Industrial Experiments, Oliver and Boyd, London, 1984 Search PubMed.
  5. D. W. Steinberg and W. G. Hunter, Technometrics, 1988, 26, 71.
  6. S. N. Deming and S. L. Morgan, Experimental Design: A Chemometric Approach, Elsevier, Amsterdam, 1987 Search PubMed.
  7. E. Morgan, K. W. Burton and P. A. Church, Chemometr. Intell. Lab. Syst., 1989, 5, 283 CrossRef.
  8. R. G. Brereton, Chemometrics Applications of Mathematics and Statistics to Laboratory Systems, Ellis Horwood, Chichester, 1993 Search PubMed.
  9. C. K. Bayne and I. B. Rubin, Practical Experimental Designs and Optimization Methods for Chemists, VCH, Weinheim, 1986 Search PubMed.
  10. H. Martens and T. Næs, Multivariate Calibration, Wiley, Chichester, 1989 Search PubMed.
  11. M. A. Sharaf, D. L. Illman and B. R. Kowalski, Chemometrics, Wiley, New York, 1986 Search PubMed.
  12. Analytical Methods Committee, Analyst, 1994, 119, 2363 Search PubMed.
  13. N. R. Draper and H. Smith, Applied Regression Analysis, Wiley, New York, 1966 Search PubMed.
  14. J. C. Miller and J. N. Miller, Statistics for Analytical Chemistry, Ellis Horwood, Chichester, 1988 Search PubMed.
  15. R. L. Plackett, Regression Analysis, Oxford University Press, Oxford, 1960 Search PubMed.
  16. P. Velleman and R. Welsch, Am. Stat., 1981, 35, 234.
  17. M. A. Allus, R. G. Brereton and G. Nickless, Chemometr. And Intell. Lab. Syst., 1989, 6, 65 Search PubMed.
  18. P. W. Araujo and R. G. Brereton, Trends Anal. Chem., 1996, 15, 156 CrossRef CAS.
  19. D. S. Moore, Statistics. Concepts and Controversies, Freeman, San Francisco, CA, California, 1979 Search PubMed.
  20. J. Topping, Errors of Observation and Their Treatment, Chapman & Hall, London, 1962 Search PubMed.
  21. O. L. Davies and P. L. Goldsmith, Statistical Methods in Research and Production, Longmans, London, 1982 Search PubMed.
  22. H. Working and H. Hotelling, J. Am. Stat. Assoc. Suppl. (Proc.), 1929, 24, 73 Search PubMed.
  23. D. A. Belsey, E. Kuh and R. E. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, Wiley, New York, 1980 Search PubMed.
  24. V. L. Anderson and R. L. McLean, Design of Experiments: A Realistic Approach, Marcel Dekker, New York, 1974 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.