Assessment of Different Fluorimetric Reactions for Cyanide Determination in Flow Systems

(Note: The full text of this document is currently only available in the PDF Version )

Esther Miralles, Dolors Prat, Ramon Compañó and Mercè Granados


Abstract

Several fluorimetric reactions for the determination of cyanide by means of flow injection systems were tested. The first reaction is based on the displacement of 8-hydroxyquinoline-5-sulfonic acid (HQS) from the Pd(HQS)2 complex by cyanide ion and the subsequent reaction of free HQS with MgII to form a fluorescent species. Secondly, the inhibitory effect of cyanide on the reaction between iodine and fluorescein was also evaluated as a method to quantify cyanide. The third method is based on the detection of an isoindole derivative formed by the reaction of o-phthalaldehyde (OPA) or 2,3-naphthalenedialdehyde (NDA) with glycine in the presence of cyanide. Chemical and hydrodynamic parameters were optimized for each system and the analytical performance of the methods was established. Detection limits of 5 µg l-1 (fluorescein–iodine method), 0.40 µg l-1 (Pd–HQS–Mg method), 0.25 µg l-1 (OPA method) and 0.03 µg l-1 (NDA method) were obtained.


References

  1. S. Nagashima, Anal. Chem., 1984, 56, 1944 CrossRef CAS.
  2. A. Tanaka, K. Mashiba and T. Deguchi, Anal. Chim. Acta, 1988, 214, 259 CrossRef CAS.
  3. P. Marion, M. C. Rouillier, V. Blet and M. N. Pons, Anal. Chim. Acta, 1990, 238, 117 CrossRef CAS.
  4. E. Figuerola, A. Florido and J. De Pablo, Fresenius' Z Anal. Chem., 1988, 331, 620 Search PubMed.
  5. APHA, AWWA and WPCF, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, 17th edn., 1989 Search PubMed.
  6. Annual Book of ASTM Standards, American Society for Testing and Materials, Easton, MD, 1979 Search PubMed.
  7. V. Kubán, Anal. Chim. Acta, 1992, 259, 45 CrossRef CAS.
  8. Y. Liu, R. D. Rocklin, R. J. Joyce and M. J. Doyle, Anal. Chem., 1990, 62, 766 CrossRef CAS.
  9. Z. Zhu and Z. Fang, Anal. Chim. Acta, 1987, 198, 25 CrossRef CAS.
  10. J. C. L. Meeussen, E. J. M. Temminghoff, M. G. Keizer and I. Novozamsky, Analyst, 1989, 114, 959 RSC.
  11. A. Sano, M. Takezawa and S. Takitani, Anal. Chim. Acta, 1989, 225, 351 CrossRef CAS.
  12. J. S. Hanker, A. Gelberg and B. Witten, Anal. Chem., 1958, 30, 93 CrossRef CAS.
  13. G. Guoquan, Z. Hong. and W. Liufang, Anal. Lett., 1994, 27, 2797.
  14. Q. Yin and C. Ho, Anal. Lett., 1988, 21, 1297 CAS.
  15. A. Tanaka, K. Deguchi and T. Deguchi, Anal. Chim. Acta, 1992, 261, 281 CrossRef CAS.
  16. D. Chen, M. D. Luque de Castro and M. Valcárcel, Talanta, 1990, 37, 1049 CrossRef CAS.
  17. A. Sano, N. Takimoto and S. Takitani, J. Chromatogr. B, 1992, 582, 131 CrossRef CAS.
  18. K. Gamoh and S. Imamichi, Anal. Chim. Acta, 1991, 251, 255 CrossRef CAS.
  19. K. Sumiyoshi, T. Yagi and H. Nakamura, J. Chromatogr. A, 1995, 690, 77 CrossRef CAS.
  20. K. Soroka, R. S. Vithanage, D. A. Phillips, B. Walker and P. K. Dasgupta, Anal. Chem., 1987, 59, 629 CrossRef CAS.
  21. G. E. P. Box, W. G. Hunter and J. S. Hunter, Statistics for Experiments. An Introduction to Design, Data Analysis and Model Building, Wiley, New York, 1978 Search PubMed.
  22. P. De Montigny, J. F. Stobaugh, R. S. Givens, R. G. Carlson, K. Srinivasachar, L. A. Sternson and T. Higuchi, Anal. Chem., 1987, 59, 1096 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.