Slurry Sampling for Hydride Generation Atomic Absorption Spectrometric Determination of Arsenic in Cigarette Tobaccos

(Note: The full text of this document is currently only available in the PDF Version )

Jerzy Mierzwa, Samuel B. Adeloju and Harkirat S. Dhindsa


Abstract

The development of a slurry sampling hydride generation atomic absorption spectrometric (HGAAS) method for the determination of arsenic in cigarette tobacco samples is described. The method is relatively simple and has been shown to give values of total arsenic close to those obtained using methods requiring total dissolution and decomposition of all vegetable matter before analysis. Pre-treatment of samples slurried in nitric acid by ultrasonication permitted the extraction of about 90% of the total arsenic from tobacco samples. Further improvement in the recovery efficiency (up to 93–94%) was accomplished by the use of an additional step of short microwave-accelerated treatment. L-Cysteine was used as a pre-reduction agent. The accuracy and precision of the slurry sampling HGAAS method were studied using the certified reference material (CRM) CTA-OTL-1 Oriental Tobacco Leaves. Under the optimum conditions, as little as 2.6 ng of arsenic can be detected. The relative standard deviation of the overall procedure was calculated to be below 7.6% at arsenic concentration levels of 0.5–0.9 mg kg-1 and the analytical results obtained for the CRM agreed with the certified value. The main factors that influenced the reliability of the method were sample homogeneity, particle size and slurry concentration.


References

  1. Arsenic in the Environment. Part I: Cycling and Characterization, ed. Nriagu, J. O., Wiley, New York, 1994 Search PubMed.
  2. Registry of Toxic Effects of Chemical Substances, ed. Tatken, R. L., and Lewis, R. J., US Department of Health and Human Services, Cincinnati, OH, 1983 Search PubMed.
  3. A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants, CRC Press, Boca Raton, FL, 1984 Search PubMed.
  4. S. Ahmed, M. S. Chaudhry and I. H. Qureshi, J. Radioanal. Chem., 1979, 54, 331.
  5. S. Dupire and M. Hoenig, Analusis, 1980, 8, 153 CAS.
  6. M. Hoenig and P. Vanhoegweghen, Spectrochim. Acta, Part B, 1982, 37, 817 CrossRef.
  7. H. R. Griffin, M. B. Hocking and D. G. Lowery, Anal. Chem., 1975, 47, 229 CrossRef CAS.
  8. P. N. Vijan, A. C. Rayner, D. Sturgis and G. R. Wood, Anal. Chim. Acta, 1976, 82, 329 CrossRef CAS.
  9. R. G. Smith, J. C. Van Loon, J. R. Knechtel, J. L. Fraser, A. E. Pitts and A. E. Hodges, Anal. Chim. Acta, 1977, 93, 61 CrossRef CAS.
  10. A. Kuldvere, At. Spectrosc., 1980, 1, 138 CAS.
  11. N. M. Arafat and W. A. Glooschenko, Analyst, 1981, 106, 1174 RSC.
  12. S. J. Haswell, J. Mendham, M. J. Butler and D. C. Smith, J. Anal. At. Spectrom., 1988, 3, 731 RSC.
  13. C. Nerin, R. Zufiaurre and J. Cacho, Mikrochim. Acta, 1992, 108, 241 CAS.
  14. I. Lopez Garcia, J. Arroyo Cortez and M. Hernande Cordoba, At. Spectrosc., 1993, 14, 144 CAS.
  15. N. J. Miller-Ihli, At. Spectrosc., 1992, 13, 1 CAS.
  16. C. Boampong, I. D. Brindle, X. Le, L. Pidwerbesky and C. M. Ceccerelli Ponzoni, Anal. Chem., 1988, 60, 1185 CrossRef CAS.
  17. I. D. Brindle and X. Le, Anal. Chem., 1989, 1, 1175 CrossRef.
  18. H. Chen, I. D. Brindle and X. Le, Anal. Chem., 1992, 64, 687.
  19. B. Welz and M. Sucmanová, Analyst., 1993, 118, 1417 RSC.
  20. B. Welz and M. Sucmanová, Analyst., 1993, 118, 1425 RSC.
  21. R. Dobrowolski and J. Mierzwa, Fresenius' J. Anal. Chem., 1992, 344, 340 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.