Liquid Chromatographic Determination Using Lanthanides as Time-Resolved Luminescence Probes for Drugs and Xenobiotics: Advantages and Limitations

(Note: The full text of this document is currently only available in the PDF Version )

A. Rieutord, P. Prognon, F. Brion and G. Mahuzier


Abstract

Lanthanide sensitized luminescence is a very attractive alternative to UV detection and other luminescence techniques, i.e., fluorescence and phosphorescence, in separation science for the detection of drugs and xenobiotics because of the large Stokes shift, narrow emission bands and long lifetime. Some published applications of HPLC determination with lanthanide (Ln3+) sensitized luminescence detection are reviewed. Advantages and limitations of this technique are discussed. Normal-phase (NP) HPLC is not influenced by the quenching effect of water whereas reversed-phase (RP) HPLC is applicable to more compounds than NP-HPLC. However, pH adjustment and the quenching effect of water on Ln3+ luminescence are the main drawbacks of RP-HPLC. Elution properties and the need for pH adjustment are two arguments for selecting the mode of addition of Ln3+, i.e., pre- or post-column in the HPLC system. Sensitized Ln3+ luminescence detection is a much more specific method of detection than UV or fluorescence detection after HPLC separation but nevertheless, in some cases, does not always exhibit a significant increase in analytical performance when the donor itself is a strong fluorophore. The development of more powerful excitation sources could improve the limit of detection of the Ln3+ sensitized detection technique. This review suggests that it would be useful to obtain predicting factors about the drug to establish whether the latter is suitable to be measured using an HPLC–Ln3+ approach.


References

  1. R. Farinotti, Thèse de Doctorat d'Etat, Université Paris Sud, 1983 Search PubMed.
  2. W. L. Hinze, H. N. Singh, Y. Baba and N. G. Harvey, TrAC, Trends Anal. Chem. (Pers Ed.), 1984, 3, 193 CrossRef CAS.
  3. M. Hoshino, M. Imamura, K. Ikehara and T. Hama, J. Phys. Chem., 1981, 85, 1820 CrossRef CAS.
  4. J. J. Donkerbroek, C. Gooijer, N. H. Velthorst and R. W. Frei, Anal. Chem., 1982, 54, 891 CAS.
  5. D. Rendell, Fluorescence and Phosphorescence Spectroscopy. Analytical Chemistry by Open Learning, Wiley, New York, 1987 Search PubMed.
  6. S. I. Weissman, J. Chem. Phys., 1942, 10, 214 CrossRef CAS.
  7. E. E. Dibella, J. B. Weisman, M. J. Joseph, J. R. Schultz and T. J. Wenzel, J. Chromatogr., 1985, 328, 101 CrossRef CAS.
  8. L. Sargi, Thèse de Doctorat d'Etat, Université Paris Sud, 1992 Search PubMed.
  9. A. Rieutord, L. Vazquez, M. Soursac, P. Prognon, J. Blais, P. Bourget and G. Mahuzier, Anal. Chim. Acta, 1994, 290, 215 CrossRef.
  10. T. J. Wenzel and L. M. Colette, J. Chromatogr., 1988, 436, 299 CrossRef CAS.
  11. T. J. Wenzel, K. Zomlefer, S. B. Rapkin and R. H. Keith, J. Liq. Chromatogr., 1995, 18, 1473 CAS.
  12. T. J. Wenzel, L. M. Colette, D. T. Dahlen, S. M. Hendrickson and L. W. Yarmaloff, J. Chromatogr., 1988, 433, 149 CrossRef.
  13. J. X. Duggan, J. Liq. Chromatogr., 1991, 14, 2499 CAS.
  14. M. Amin, K. Harrington and R. Von Wandruska, Anal. Chem., 1993, 65, 2346 CAS.
  15. M. Schreurs, J. P. C. Vissers, C. Gooijer and N. H. Velthorst, Anal. Chim. Acta, 1992, 262, 201 CrossRef CAS.
  16. A. G. Mwalupindi and I. M. Warner, Anal. Chim. Acta, 1995, 306, 49 CrossRef CAS.
  17. B. I. Vazquez, C. Fente, C. Franco, A. Cepeda, P. Prognon and G. Mahuzier, J. Chromatogr. A, 1996, 727, 185 CrossRef CAS.
  18. M. Schreurs, C. Gooijer and N. H. Velthorst, Anal. Chem., 1990, 62, 2053.
  19. M. Schreurs, C. Gooijer and N. H. Velthorst, Fresenius' J. Anal. Chem., 1991, 339, 499 CrossRef CAS.
  20. M. Schreurs, L. Hellendoorn, C. Gooijer and N. H. Velthorst, J. Chromatogr, 1991, 552, 625 CrossRef CAS.
  21. I. Hemmilä, Scand. J. Clin. Lab. Invest., 1988, 48, 389 CAS.
  22. F. S. Richardson, Chem. Rev., 1982, 82, 541 CrossRef CAS.
  23. E. P. Diamandis, Clin. Biochem., 1988, 21, 139 CrossRef CAS.
  24. J. Georges, Analyst, 1993, 118, 1481 RSC.
  25. A. Heller and E. Wasserman, J. Chem. Phys., 1965, 42, 949 CrossRef CAS.
  26. G. R. Choppin and S. L. Bertha, J. Inorg. Nucl. Chem., 1973, 35, 1309 CrossRef CAS.
  27. S. Panadero, A. Gòmez-Hens and D. Pérez-Bendito, Anal. Chim. Acta, 1995, 303, 39 CrossRef CAS.
  28. B. B. Hasinoff, J. Chromatogr. B, 1994, 656, 451 CrossRef CAS.
  29. L. M. Perry and J. D. Winefordner, Talanta, 1990, 10, 965 CrossRef CAS.
  30. L. M. Perry and J. D. Winefordner, Anal. Chim. Acta, 1990, 237, 273 CrossRef CAS.
  31. L. M. Hirschy, E. V. Dose and J. D. Wineforder, Anal. Chim. Acta, 1983, 147, 311 CrossRef CAS.
  32. J. Georges and S. Ghazarian, Anal. Chim. Acta, 1993, 276, 401 CrossRef CAS.
  33. C. Moulin, P. Decambox and P. Mauchien, Anal. Chim. Acta, 1991, 254, 145 CrossRef CAS.
  34. G. Zhu, Z. Si, J. Yang and J. Ding, Anal. Chim. Acta, 1990, 231, 157 CrossRef CAS.
  35. I. Hemmilä, S. Dahuku, V. M. Mukkala, H. Siitari and T. Lövgren, Anal. Biochem., 1984, 137, 335 CrossRef CAS.
  36. F. Halverson, J. S. Brinen and J. R. Leto, J. Chem. Phys., 1964, 41, 157 CrossRef.
  37. Y. Haas and G. Stein, J. Phys. Chem., 1971, 75, 3668 CrossRef.
  38. M. D. Lind, B. Lee and J. L. Hoard, J. Am. Chem. Soc., 1965, 87, 1611 CrossRef.
  39. C. Gooijer, M. Schreurs and N. H. Velthorst, in HPLC Detection: Newer Methods, ed. Patonay, G., VCH, New York, 1992, pp. 27–55 Search PubMed.
  40. R. J. Van de Nesse, N. H. Velthorst, U. A. Th. Brinkman and C. Gooijer, J. Chromatogr. A, 1995, 704, 1 CrossRef CAS.
  41. V. Ferrari, G. Giordano, A. T. Cracco, N. Dussini, L. Chiaandetti and F. Zachelo, J. Chromatogr., 1989, 497, 101 CrossRef.
  42. F. Vallée, M. Lebel and M. G. Bergeron, Ther. Drug Monit., 1986, 8, 340 CAS.
  43. F. Jehl, C. Gallion, J. Debs, J. M. Brogrard, H. Monteil and R. Minck, J. Chromatogr, 1985, 339, 347 CrossRef.
  44. J. Blanchard, S. Harvey and W. J. Morgan, J. Chromatogr. Sci., 1990, 28, 203.