Determination of Iodine in Milk and Oyster Tissue Samples Using Combustion and Peroxydisulfate Oxidation

(Note: The full text of this document is currently only available in the PDF Version )

F. Gu, A. A. Marchetti and T. Straume


Abstract

Two methods are described for the preparation of samples for total iodine measurement in biological matrices. In the first method, the samples were combusted in a stream of oxygen to release iodine that, subsequently, was trapped in a solution as iodide. The second method is a new approach in which the samples were oxidized in a basic solution of peroxydisulfate. In this case, the iodine was retained in solution as iodate. Total iodine was measured by gas chromatographic analysis of the 2-iodopentan-3-one derivative. The methods were tested using Standard Reference Materials (SRMs) 1549 Non-Fat Milk Powder, and 1566a and 1566 Oyster Tissue. Also, KI and KIO3 were used for testing the procedures. The results obtained for the SRMs, given as average ± standard deviation in µg g-1, were: 3.39 ± 0.14 and 3.40 ± 0.23 for SRM 1549; 4.60 ± 0.42 and 4.51 ± 0.45 for SRM 1566a; and 2.84 ± 0.16 and 2.76 ± 0.06 for SRM 1566; values corresponding to combustion and wet oxidation, respectively. Overall, the absolute recoveries varied between 91 and 103%. These methods can also be used in the preparation of targets for the measurement of 129I using accelerator mass spectrometry.


References

  1. V. L. Spate, J. S. Morris, S. Chickos, C. K. Baskett, M. M. Mason, T. P. Cheng, C. L. Reams, C. West, C. Furnee, W. Willett and P. Horn-Ross, J. Radioanal. Nucl. Chem., 1995, 195, 21 CAS.
  2. M. M. Mason, V. L. Spate, J. S. Morris, C. K. Baskett, T. P. Cheng, C. L. Reams, L. Le Marchand, B. E. Henderson and L. N. Kolonel, J. Radioanal. Nucl. Chem., 1995, 195, 57 CAS.
  3. M. M. Heckman, J. Assoc. Off. Anal. Chem., 1979, 62, 1045 Search PubMed.
  4. M. Nishida, H. Sakurai, U. Tezuka, J. Kawada, M. Koyama and J. Takada, Clin. Chim. Acta, 1990, 187, 181 CrossRef CAS.
  5. V. Y. Zaichick, A. F. Tsyb and B. M. Vtyurin, Analyst, 1995, 120, 817 RSC.
  6. D. Williams, Nature (London), 1994, 371, 556 CrossRef CAS.
  7. T. Straume, A. A. Marchetti, L. R. Anspaugh, V. T. Khrouch, Y. I. Gavrilin, S. M. Shinkarev, V. V. Drozdovitch, A. V. Ulanovsky, S. V. Korneev, M. K. Brekeshev, E. S. Leonov, G. Voigt, S. V. Pachenko and V. F. Minenko, Health Phys., 1996, 71, 733 Search PubMed.
  8. B. R. Norman and G. V. Iyengar, Fresenius' J. Anal. Chem., 1994, 348, 430 CrossRef CAS.
  9. R. A. Hasty, Mikrochim. Acta, 1971, 348 CAS.
  10. R. A. Hasty, Mikrochim. Acta, 1973, 621 CAS.
  11. S. Grys, J. Chromatogr., 1974, 100, 43 CrossRef CAS.
  12. L. Maros, M. Káldy and S. Igaz, Anal. Chem., 1989, 61, 733 CrossRef CAS.
  13. T. Mitsuhashi and Y. Kaneda, J. Assoc. Off. Anal. Chem., 1990, 73, 790 Search PubMed.
  14. A. A. Marchetti, F. Gu, R. Robl and T. Straume, Nucl. Instrum. Methods, in the press Search PubMed.
  15. G. R. Peyton, Mar. Chem., 1993, 41, 91 CrossRef CAS.
  16. A. A. Marchetti, L. Rose and T. Straume, Anal. Chim. Acta, 1994, 296, 243 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.