Automated Colorimetric Determination of Achromobacter lyticus Protease Activity in Fermentation Samples Using Tos–Gly–Pro–Lys–pNA as a Chromogenic Substrate

(Note: The full text of this document is currently only available in the PDF Version )

Jan Eriksen and Kaj André Holm


Abstract

An automated method (COBAS FARA // centrifugal analyzer) has been developed for the determination of the activity of Achromobacter lyticus lysyl-specific protease. The chromogenic substrate used was Tos–Gly–Pro–Lys–pNA. The enzyme catalyzes the liberation of p-nitroaniline from the peptide, forming a yellow color, which when recorded at 405 nm, is proportional to the protease activity. The general technical conditions as well as the general enzymatic kinetics have been optimized. The resulting method had a good precision, sensitivity and speed. The LOQ was 0.01 U ml-1 and the LOD was 0.0001 U ml-1. The method was linear within the range of 0.010 U ml-1 to 0.125 U ml-1 with r = 0.9999 and with a small or no intercept. The repeatability was <0.7%. The reproducibility (day-to-day) was <1.3%. Robustness testing showed that the most critical parameters were wavelength, pH and temperature.


References

  1. F. Sakiyama and T. Masaki, Methods Enzymol., 1994, 244, 126 CrossRef CAS.
  2. S. Norioka and F. Sakiyama, in Methods in Protein Sequence Analysis, ed. Imohiri, K., Plenum Press, New York, 1993, p. 100 Search PubMed.
  3. Y. Kitagawa, Y. Katsube, K. Sasi, Y. Matsuura, S. Norioka and F. Sakiyama, presented at the XVIth International Congress and General Assembly, 1993, IUC, Beijing, China.
  4. T. Masaki, T. Tanaka, T. Tsunasawa, F. Sakiyama and M. Soejima, Biosci. Biotech. Biochem., 1992, 56, 1604 CAS.
  5. B. Hagihara, H. Matsubara, M. Nakai and K. Okunuki, J. Biochem., 1958, 45, 185 Search PubMed.
  6. U. Tuppy, U. Wiesbauer and E. Winterberger, Z. Physiol. Chem., 1962, 329, 278 Search PubMed.
  7. M. Zimmerman, E. Yurewicz and G. Patel, Anal. Biochem., 1976, 70, 258 CAS.
  8. G. W. Schwert and Y. Takenaka, Biochim. Biophys. Acta, 1955, 16, 570 CrossRef CAS.
  9. W. R. Rypniewski, C. Dambmann, C. Osten, M. Dauter and K. S. Wilson, Acta Cryst., 1995, 73, D51.
  10. Y. Kawata, F. Sakiyama and H. Tamaoki, Eur. J. Biochem., 1988, 176, 683 CAS.
  11. K. Morihara, T. Oka, H. Tsuzuki, Y. Tochino and T. Kanaya, Biochem. Biophys. Res. Commun., 1980, 92, 396 CrossRef CAS.
  12. K. Morihara, Y. Ueno and K. Sakina, Biochem. J., 1986, 240, 803 CAS.
  13. R. Lottenberg and C. M. Jackson, Biochem. Biophys. Acta, 1983, 742, 539 Search PubMed.
  14. T. Masaki, presented at the Novo Nordisk Enzyme Symposium, 1993, Tokyo, Japan.
  15. C. S. Hanes, BioChem. J., 1932, 26, 1406 CAS.
  16. W. J. Youden and E. H. Steiner, Statistical Manual of the Association of Official Analytical Chemists, AOAC, Washington 1975 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.