Assessment of Dowex 1-X8-based Anion-exchange Procedures for the Separation and Determination of Ruthenium, Rhodium, Palladium, Iridium, Platinum and Gold in Geological Samples by Inductively Coupled Plasma Mass Spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Ian Jarvis, Marina M. Totland and Kym E. Jarvis


Abstract

Synthetic multielement solutions of the platinum group metals (PGE: Ru; Rh; Pd; Ir; Pt) and gold, with analysis by ICP-AES and ICP-MS, have been used to study the behaviour of the precious metals on Dowex 1-X8 resin. Simple solutions of precious-metal chlorocomplexes showed near-complete adsorption (>99%) of most elements, and only minor breakthrough of Ru and Ru (≈5%). Solutions pre-treated with acid mixtures typically used to decompose geological samples, demonstrated that perchloric acid adversely affects the adsorption of the PGEs on the resin. Solutions treated with HF–HNO3–HCl maintained good retention of Ir, Pt, Au (>99%), Pd (>94%) and Ru (>90%), but displayed significant loss (up to 40%) of Rh. A two-step procedure was necessary to elute the precious metals from the resin: 0.3 mol l-1 thiourea prepared in 0.1 mol-1 HCl removed Ru, Pd, Pt, Au, and some Rh: 12 mol l-1 HCl eluted remaining Rh and all Ir. Recoveries ranged from 50 to 100%. At low levels, the determination of PGE and Au in the thiourea fraction by ICP-MS was compromised by high levels of total dissolved solids (TDS), which necessitated dilution of the eluate prior to analysis. The TDS was reduced by decomposing thiourea with HNO3 and removing SO42- by precipitation of BaSO4, but this led to lower and more erratic results, and increased contamination. An assessment of the optimised procedure employing geological reference materials PTM-1, PTC-1 and SARM7, indicated that acceptable results should be attainable for ICP-MS determination of most elements in geological samples containing high concentrations (>1 µg g-1) of the PGE, for which decomposition of thiourea is unneccessary. The addition of a decomposition step led to low recovery of all elements except Ir, which was present entirely in the HCl eluate. The method is viable for the determination of Ir in a range of geological materials, but modifications will be required if it is to be extended to the other precious metals.


References

  1. G. E. M. Hall and G. F. Bonham-Carter, J. Geochem. Explor., 1988, 30, 255 CrossRef CAS.
  2. J. C. Van Loon and R. R. Barefoot, Analytical Methods for Geochemical Exploration, Academic Press, San Diego, CA, 1989 Search PubMed.
  3. J. C. Van Loon and R. R. Barefoot, Determination of the Precious Metals—Selected Instrumental Methods, Wiley, Chichester, 1991 Search PubMed.
  4. D. C. Colodner, E. A. Edmond, J. M. Boyle and J. Thomson, Nature, 1992, 358, 402 CrossRef CAS.
  5. M. M. Totland, I. Jarvis and K. E. Jarvis, Chem. Geol., 1995, 124, 21 CrossRef CAS.
  6. S. J. Ali-Bazi and A. Chow, Talanta, 1984, 31, 815 CrossRef CAS.
  7. J. Korkisch, Handbook of Ion Exchange Resins: Their Application in Inorganic Analytical Chemistry, CRC Press, Boca Raton, FL, 1989, vol. 3 Search PubMed.
  8. M. Marhol, in Comprehensive Analytical Chemistry, ed. Svehla, G., Wilson and Wilson's, Prague, 1982, vol. XIV, p. 580 Search PubMed.
  9. J. Korkisch and H. Klakl, Talanta, 1968, 15, 339 CrossRef CAS.
  10. M. M. Totland, I. Jarvis and K. E. Jarvis, Chem. Geol., 1993, 104, 175 CrossRef CAS.
  11. P. W. J. M. Boumans, Line Coincidence Tables for Inductively Coupled Plasma Atomic Emission Spectrometry, 2nd edn., Pergamon, Oxford, 1984, vol. 2 Search PubMed.
  12. P. W. J. M. Boumans, Line Coincidence Tables for Inductively Coupled Plasma Atomic Emission Spectrometry, 2nd edn., Pergamon, Oxford, 1984, vol. 1 Search PubMed.
  13. R. K. Winge, V. A. Fassel, V. J. Paterson and M. A. Floyd, Inductively Coupled Plasma-Atomic Emission Spectroscopy—An Atlas of Spectral Information, Elsevier, Amsterdam, 1985 Search PubMed.
  14. M. M. Totland, PhD Thesis, Kingston University, Kingston upon Thames, 1993.
  15. K. E. Jarvis, A. L. Gray and R. S. Houk, Handbook of Inductively Coupled Plasma Mass Spectrometry, Blackie, Glasgow, 1992 Search PubMed.
  16. I. Jarvis and K. E. Jarvis, Chem. Geol., 1992, 95, 1 CrossRef CAS.
  17. C. H. Branch and D. Hutchison, J. Anal. At. Spectrom., 1986, 1, 433 RSC.
  18. D. D. Busch, J. M. Prospero and R. A. Naumann, Anal. Chem., 31, 884 Search PubMed.
  19. J. R. De Laeter and N. Mermelengas, Geostand. Newsl., 1978, 2, 9.
  20. V. Hodge, M. Stallard, M. Koide and E. D. Goldberg, Anal. Chem., 1986, 58, 616 CrossRef CAS.
  21. K. A. Kraus, F. Nelson and G. W. Smith, J. Phys. Chem., 1954, 58, 11 CrossRef CAS.
  22. J. W. Morgan, Anal. Chim. Acta, 1965, 32, 8 CrossRef CAS.
  23. R. K. Petrie and J. W. Morgan, J. Radioanal. Chem., 1982, 74, 15 CAS.
  24. M. M. Totland, I. Jarvis and K. E. Jarvis, Chem. Geol., 1992, 95, 35 CrossRef CAS.
  25. T. T. Chao and R. F. Sanzolone, J. Geochem. Explor., 1992, 44, 65 CrossRef CAS.
  26. I. Jarvis, in Handbook of Inductively Coupled Plasma Mass Spectrometry, ed. Jarvis, K. E., Gray, A. L., and Houk, R. S., Blackie, Glasgow, 1992, pp. 172–224 Search PubMed.
  27. P. J. Potts, A Handbook of Silicate Rock Analysis, Blackie, London, 1987 Search PubMed.
  28. P. J. Potts, in Analysis of Geological Materials, ed. Riddle, C., Marcel Dekker, New York, 1993, pp. 123–220 Search PubMed.
  29. Z. Sulcek and P. Povondra, Methods of Decomposition in Inorganic Analysis, CRC Press, Boca Raton, FL, 1989 Search PubMed.
  30. S. Singh, S. P. Mathur, R. S. Thakur and K. Lal, Orient. J. Chem., 1987, 3, 203 Search PubMed.
  31. CRC Handbook of Chemistry and Physics, ed. Weast, R. C., Astle, M. J., and Beyer, W. H., CRC Press, Boca Raton, FL, 68th edn., 1987 Search PubMed.
  32. J. Enzweiler, P. J. Potts and K. E. Jarvis, Analyst., 1995, 120, 1391 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.