Quantitative Analysis of Sulfated Calcium Carbonates Using Raman Spectroscopy and X-ray Powder Diffraction

(Note: The full text of this document is currently only available in the PDF Version )

Christos G. Kontoyannis, Malvina G. Orkoula and Petros G. Koutsoukos


Abstract

A non-destructive method based on the use of Raman spectroscopy (RS) for the determination of the percentage of gypsum in sulfated marble is presented. The Raman spectra of well mixed powder samples of calcite–aragonite, calcite–gypsum and gypsum–aragonite pairs of mixtures were recorded and the characteristic bands at 280 cm-1 for calcite, 205 cm-1 for aragonite and 412 cm-1 for gypsum were used as the basis for the quantitative analysis of specimens in which the most stable calcium carbonate phases, calcite and aragonite, were present. The detection limits were found to be 0.3 mol% for calcite, 0.5 mol% for aragonite and 0.6 mol% for gypsum. For samples containing only one calcium carbonate phase the use of the strong and sharp Raman band at 1085 cm-1, common for aragonite and calcite, together with the intensity of the Raman peak at 1006 cm-1 for gypsum, yielded lower detection limits: calcite 0.1, aragonite 0.1 and gypsum 0.05 mol%. The analysis by RS was compared with X-ray powder diffraction (XRD). In this analysis, the calibration curves were constructed using the relative intensities corresponding to the 113, the 111 and the 12[1 with combining macron] reflections of the calcite, aragonite and gypsum, respectively. The detection limits for calcite, aragonite and gypsum were 4, 5 and 1–2 mol%, respectively. The potential of using RS for a point-by-point analysis (‘mapping’) of a surface by focusing the laser beam on the selected spots was also demonstrated on a marble sample removed from Athens National Garden, exposed in the open air.


References

  1. D. Camuffo, M. Del Monte, C. Sabbioni and O. Vittori, Atmos. Environ., 1982, 16, 2253 CrossRef CAS.
  2. M. Ross, E. S. McGee and D. R. Ross, Am. Mineral., 1989, 74, 367 CAS.
  3. T. Skoulikidis and D. Charalambous, Br. Corros. J., 1981, 16, 70 Search PubMed.
  4. L. G. Johanson, O. Lindqvist and R. Mangio, Durability Build. Mater., 1988, 5, 439 Search PubMed.
  5. K. L. Gauri, A. N. Chowdhury, N. P. Kulshreshta and A. R. Punuru, Stud. Conserv., 1989, 34, 201 Search PubMed.
  6. V. Verges-Belmin, Atmos. Environ., 1994, 28, 295 CrossRef CAS.
  7. G. Van Houte, L. Rodrique, M. Genet and B. Delmon, Environ. Sci. Technol., 1981, 15, 327 CAS.
  8. F. W. Lipfert, Atmos. Environ., 1989, 23, 415 CrossRef CAS.
  9. K. Lal Gauri and G. C. Holdren, Jr., Environ. Sci. Technol., 1981, 15, 386 CAS.
  10. R. A. Berner, Am. J. Sci., 1966, 264, 1 Search PubMed.
  11. B. R. Hacker, S. H. Kirby and S. R. Bohlen, Science, 1992, 258, 110 CAS.
  12. E. L. Compere and J. M. Bates, Limnol. Oceanogr., 1973, 18, 326 Search PubMed.
  13. A. Xyla and P. G. Koutsoukos, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 3165 RSC.
  14. R. G. Herman, C. E. Bogdan, A. J. Sommer and D. R. Simpson, Appl. Spectrosc., 1987, 41, 437 CAS.
  15. S. T. Silk and S. Z. Lewin, Adv. X-ray Anal., 1971, 14, 29 Search PubMed.
  16. P. G. Griffith, in Spectroscopy of Inorganic-based Materials, eds. Clark, R. J. H., and Hester, R. E., Wiley, Chichester, 1987, pp. 137 and 151 Search PubMed.
  17. G. Behrens, L. T. Kuhn, R. Ubic and A. H. Heuer, Spectrosc. Lett., 1995, 28, 983 CAS.
  18. A. Degen and G. A. Newman, Spectrochim. Acta, Part A, 1993, 49, 859 CrossRef.
  19. D. Strommen and K. Nakamoto, in Laboratory Raman Spectroscopy, Wiley, New York, 1984, pp. 71–75 Search PubMed.
  20. C. Whiston, in X-ray Methods, Wiley, New York, 1987, p. 113 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.