Enzymic Digestion–High-pressure Homogenization Prior to Slurry Introduction Electrothermal Atomic Absorption Spectrometry for the Determination of Selenium in Plant and Animal Tissues

(Note: The full text of this document is currently only available in the PDF Version )

Yanxi Tan and William D. Marshall


Abstract

Homogenization, in combination with partial enzymic digestion with a crude protease alone or admixed with lipase or cellulase, was investigated as a means of releasing Se residues from zoological and botanical matrices prior to slurry introduction ETAAS. Preliminary timed trials with two zoological certified reference materials (CRMs), one botanical CRM and one animal feed indicated that Se release became quantitative with 4–8 h of digestion, that homogenization prior to digestion increased the initial rate of analyte release, but that homogenization post-digestion and immediately prior to ETAAS did not significantly improve the precision of replicate digestions. Storage of the crude botanical digests at 4 °C for 5 d resulted in quantitative recoveries of Se from each of the digests. Storage at 4 °C for 10 d of 4 and 8 h lipase/protease digests of six other CRMs resulted in quantitative recoveries of Se unless their certified concentrations were appreciably less than the levels determined in control digests containing the enzyme(s) alone. Apparently, Se residues were transferred virtually quantitatively to the liquid phase of the digested suspension and showed no tendency to segregate during the 10 d of storage. Eight other mixtures of ground plant matter (0.13 ≤ [Se] ≤ 1.31 µg g-1), formulated as animal feed supplements, behaved identically when stored post-digestion. The technique was also applied successfully to freeze-dried fresh and boiled fish tissues The principal advantages of the enzymic digestion procedure are its simplicity and lack of operator intervention.


References

  1. I. Novozamski, H. J. van der Lee and V. J. G. Houba, Microchim. Acta, 1995, 119, 183 Search PubMed.
  2. B. Sansoni and V. K. Panday, in Analytical Techniques for Heavy Metals in Biological Fluids, ed. Fachetti, S., Elsevier, Amsterdam, 1983, p. 91 Search PubMed.
  3. J. Mincwewski, J. Chwastowska and R. Dybczynski, Separation and Preconcentration Methods in Inorganic Trace Analysis, Ellis Horwood, Chichester, 1982 Search PubMed.
  4. J. Matusiewicz and R. E. Sturgeon, Prog. Anal. Spectrosc., 1989, 12, 21 Search PubMed.
  5. H. J. Reid, S. Greenfield and T. E. Edmonds, Analyst, 1995, 120, 1543 RSC.
  6. F. J. Langmyhr, Analyst, 1979, 104, 993 RSC.
  7. F. J. Langmyhr, Prog. Anal. At. Spectrosc., 1985, 8, 193 Search PubMed.
  8. N. J. Miller-Ihli, Anal. Chem., 1992, 64, 965A.
  9. Z. A. de Benzo, M. Velosa, C. Ceccarelli, M. de la Guardia and A. Salvador, Fresenius' J. Anal. Chem., 1991, 339, 235 CrossRef.
  10. C. Bendicho and M. T. C. de Loos-Vollebregt, J. Anal. At. Spectrom., 1991, 6, 353 RSC.
  11. N. J. Miller-Ihli, Fresenius' J. Anal. Chem., 1993, 345, 482 CrossRef CAS.
  12. S. C. Stephen, D. Littlejohn and J. M. Ottaway, Analyst, 1985, 110, 1147 RSC.
  13. D. D. Thompson and R. J. Allen, At. Spectrosc., 1981, 2, 53 CAS.
  14. Y. Madrid, M. Bonilla and C. Camara, J. Anal. At. Spectrom., 1989, 4, 167 RSC.
  15. I. López García, F. Ortiz Sobejano and M. Hernández Córdoba, Analyst, 1991, 116, 517 RSC.
  16. M. Hoenig and P. V. Hoeyweghen, Anal. Chem., 1986, 58, 2614 CrossRef CAS.
  17. D. Albers and R. Sacks, Anal. Chem., 1987, 59, 593 CrossRef CAS.
  18. D. L. Tsalev, V. I. Slaveykova and P. B. Mandjunkov, Spectrochim. Acta, Rev., 1990, 13, 225 Search PubMed.
  19. N. J. Miller-Ihli, J. Anal. Atom. Spectrom., 1989, 4, 295 RSC.
  20. C. Bendicho and M. T. C. de Loos-Vollebregt, Spectrochim. Acta, Part B, 1990, 45, 679 CrossRef.
  21. N. J. Miller-Ihli, J. Anal. At. Spectrom., 1988, 3, 73 RSC.
  22. S. Lynch and D. Littlejohn, J. Anal. At. Spectrom., 1989, 4, 157 RSC.
  23. F. Fagioli, S. Landi, C. Locatelli, F. Righini, R. Settimo and R. Magarini, J. Anal. At. Spectrom., 1990, 5, 519 RSC.
  24. D. L. Hansen and E. T. Bush, Anal. Biochem., 1967, 18, 320 CrossRef CAS.
  25. A. J. Jackson, L. M. Michael and H. J. Schumacher, Anal. Chem., 1972, 44, 1064 CrossRef CAS.
  26. L. Murthy, E. E. Menden, P. M. Eller and H. G. Petering, Anal. Biochem., 1973, 53, 365 CrossRef CAS.
  27. T. Uchida, H. Isoyama, K. Yamada, K. Oguchi, G. Nakagawa, H. Sugie and C. Iida, Anal. Chim. Acta, 1992, 256, 277 CrossRef CAS.
  28. B. Dion, M. Ruzbie, F. R. van de Voort, A. A. Ismail and J. S. Blais, Analyst, 1994, 119, 1765 RSC.
  29. Y. Tan, W. D. Marshall and J.-S. Blais, Analyst, 1996, 121, 483 RSC.
  30. Y. Tan, J.-S. Blais and W. D. Marshall, Analyst, 1996, 121, 1419 RSC.
  31. L. Ebdon and H. G. M. Perry, J. Anal. At. Spectrom., 1988, 3, 131 RSC.
  32. D. Bradshaw and W. Slavin, Spectrochim. Acta Part B, 1989, 44, 1245 CrossRef.
  33. D. Wagley, G. Schmiedel, E. Mainka and H. J. Ache, At. Spectrosc., 1989, 10, 106 CAS.
  34. C. Bendicho and A. Sancho, At. Spectrosc., 1993, 14, 187 CAS.
  35. C. Cabrera, M. L. Lorenzo and M. C. Lopez, J. AOAC Int., 1995, 78, 1061 CAS.
  36. I. López-García, P. Viñas, N. Campillo and M. Hernández-Córdoba, J. Agric. Food Chem., 1996, 44, 836 CrossRef.
  37. N. Gilon, A. Astruc, M. Astruc and M. Potin-Gautier, Appl. Organomet. Chem., 1995, 9, 623 CrossRef CAS.
  38. J. Dedina and D. L. Tsalev, Hydride Generation Atomic Absorption Spectrometry (Chemical Analysis, vol. 130), ed. Wineforder, J. D., and Kolthoff, I. M., Wiley, Chichester, 1995 Search PubMed.
  39. K. Johansson, X. Luo and A. Olin, Talanta, 1995, 42, 1979 CrossRef CAS.
  40. N. J. Miller-Ihli, At. Spectrosc., 1992, 13, 1 CAS.
  41. D. S. Forsyth and W. D. Marshall, Environ. Sci. Technol., 1986, 20, 1033 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.