Characterization of Surfactant Selectivity in Micellar Electrokinetic Chromatography

(Note: The full text of this document is currently only available in the PDF Version )

Salwa K. Poole and Colin F. Poole


Abstract

The solvation parameter model is used to delineate the contribution of individual intermolecular interactions to the retention properties of seven common surfactants used in micellar electrokinetic chromatography. Buffer composition and concentration, pH, temperature, and voltage had only a small influence on selectivity for sodium cholate micelles in the normal experimental range for separations. Surfactant concentration was found to affect retention by changing the phase ratio without significantly changing selectivity while the addition of organic solvent in low concentration (up to 10% v/v) has an influence on the solvophobic properties of the buffer (lowers cohesion and reduces its capacity as a hydrogen-bond acid) in a manner which seems to depend very little on solvent identity. The bile salt surfactants, sodium cholate, sodium deoxycholate, sodium taurocholate, and sodium deoxytaurocholate, are quite similar as a group, exhibiting modest differences in their cohesion and hydrogen-bond acidity. Sodium dodecyl sulfate has complementary properties to the bile salt surfactants; it is less cohesive and a weaker hydrogen-bond base and a stronger hydrogen-bond acid. The sodium salt of N-dodeconyl-N-methyltaurine is a stronger hydrogen-bond base than the support buffer and weak hydrogen-bond acid; again properties that set it apart from the bile salts and sodium dodecyl sulfate for the separation of hydrogen-bonding solutes. Hexamethyltrimethylammonium bromide is the least cohesive and the strongest hydrogen-bond base of the surfactants studied but its relatively small migration window may make it less useful in practice for complex separations. Lithium perfluorooctanesulfonate has rather unique selectivity (high cohesion, significant capacity for dipole-type interactions and strong hydrogen-bond acidity) that would make it a good choice with the other surfactants for general selectivity optimization in methods development.


References

  1. C. F. Poole and S. K. Poole, Chromatography Today, Elsevier, Amsterdam, 1991, pp. 510–522 Search PubMed.
  2. P. Sandra and J. Vindevogel, Introduction to Micellar Electrokinetic Chromatography, Huthig, Heidelberg, 1992 Search PubMed.
  3. H. A. H. Corstjens, J. Frank and K. Ch. A. M. Luyben, J. Chromatogr. A, 1995, 715, 1 CrossRef CAS.
  4. H. Nishi and S. Terabe, J. Chromatogr. A, 1996, 735, 3 CrossRef CAS.
  5. P. G. H. M. Muijselaar, H. A. Claessens and C. A. Cramers, J. Chromatogr. A, 1995, 696, 273 CrossRef CAS.
  6. E. S. Ahuja and J. P. Foley, Anal. Chem., 1995, 67, 2315 CrossRef CAS.
  7. U. Pyell and U. Butehorn, Chromatographia, 1995, 40, 175 CAS.
  8. S. Terabe, J. Pharm. Biomed. Anal., 1992, 10, 705 CrossRef CAS.
  9. N. Chen, Y. Zhang, S. Terabe and T. Nakagawa, J. Chromatogr. A, 1994, 678, 327 CrossRef CAS.
  10. S. Yang and M. G. Khaledi, J. Chromatogr. A, 1995, 692, 301 CrossRef CAS.
  11. S. Yang and M. G. Khaledi, Anal. Chem., 1995, 67, 499 CrossRef CAS.
  12. S. Yang, J. G. Bumgarner, L. F. R. Kruk and M. G. Khaledi, J. Chromatogr. A, 1996, 721, 323 CrossRef CAS.
  13. S. Yang, J. G. Bumgarner and M. G. Khaledi, J. Chromatogr. A, 1996, 738, 265 CrossRef CAS.
  14. T. O. Kollie and C. F. Poole, Chromatographia, 1992, 33, 551 CAS.
  15. S. K. Poole and C. F. Poole, Analyst, 1995, 120, 289 RSC.
  16. C. F. Poole, T. O. Kollie and S. K. Poole, Chromatographia, 1992, 34, 281 CAS.
  17. S. K. Poole and C. F. Poole, J. Chromatogr. A, 1995, 697, 415 CrossRef CAS.
  18. M. H. Abraham, Chem. Soc. Rev., 1993, 22, 73 RSC.
  19. P. W. Carr, Microchem. J., 1993, 48, 4 CrossRef CAS.
  20. D. S. Seibert, C. F. Poole and M. H. Abraham, Analyst, 1996, 121, 511 RSC.
  21. D. S. Seibert and C. F. Poole, Chromatographia, 1995, 41, 51 CAS.
  22. M. H. Abraham and M. Roses, J. Phys. Org. Chem., 1994, 7, 672 CrossRef CAS.
  23. M. H. Abraham, M. Roses, C. F. Poole and S. K. Poole, J. Phys. Org. Chem., in the press Search PubMed.
  24. C. F. Poole, S. K. Poole, D. S. Seibert and C. M. Chapman, J. Chromatogr. B, Biomed. Appl., 1997, 689 Search PubMed in the press.
  25. M. H. Abraham, C. F. Poole and S. K. Poole, J. Chromatogr. A, 1996, 749, 201 CrossRef CAS.
  26. M. H. Abraham, J. Andovian-Haftvan, G. S. Whitting, A. Leo and R. S. Taft, J. Chem. Soc., Perkin Trans. 2, 1994, 1777 RSC.
  27. M. H. Abraham, J. Phys. Org. Chem., 1993, 6, 660 CrossRef CAS.
  28. M. H. Abraham and H. S. Chada, in Lipophilicity in Drug Action and Toxicology, ed. Pliska, V., Testa, B., and van de Waterbeemed, H., VCH, Weinheim, Germany, 1996, p. 311 Search PubMed.
  29. M. H. Abraham, H. S. Chadha, J. P. Dixon, C. Rofols and C. Treiner, J. Chem. Soc., Perkin Trans. 2, 1995, 887 RSC.
  30. M. H. Abraham, C. Treiner, M. Roses, C. Rafols and Y. Ishihama, J. Chromatogr. A, 1996, 752, 243 CrossRef CAS.
  31. M. Adlard, G. Okafo, E. Meenan and P. Camilleri, J. Chem. Soc. Chem. Commun., 1995, 2241 RSC.
  32. B. J. Herbert and J. G. Dorsey, Anal. Chem., 1995, 67, 744 CrossRef CAS.
  33. M. G. Khaledi, 1996, personal communication.
  34. S. K. Poole and C. F. Poole, J. Chromatogr. A, 1996, 749, 247 CrossRef CAS.
  35. M. G. Khaledi, E. Peuler and J. Ngeh-Nguainhi, Anal. Chem., 1987, 59, 2738 CrossRef CAS.
  36. M. G. Khaledi, Trends Anal. Chem., 1988, 7, 293 CrossRef CAS.
  37. M. A. Garcia, M. L. Marina and J. C. Diez-Masa, J. Chromatogr. A, 1996, 732, 345 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.