Albumin Adducts in Plasma From Workers Exposed to Toluene Diisocyanate

(Note: The full text of this document is currently only available in the PDF Version )

Pernilla Lind, Marianne Dalene, Veronica Lindström, Anders Grubb and Gunnar Skarping


Abstract

Desalted plasma from a 2,4- and 2,6-toluene diisocyanate (2,4- and 2,6-TDI) exposed worker at a factory producing flexible polyurethane foam was separated and fractionated into 200 fractions using ion-exchange chromatography followed by a gel-filtration separation and fractionation into 59 fractions. The corresponding amines (to the isocyanates), 2,4- and 2,6-toluenediamine (2,4- and 2,6-TDA), were determined in each fraction after sulfuric acid hydrolysis as pentafluoropropionic anhydride derivatives by capillary gas chromatography and chemical ionisation mass spectrometry monitoring negative ions. The ion exchange fractions containing TDA (81–115) were added together and the solution was separated and fractionated on the gel-filtration column. The fractions 81–115 contained 84 and 72% of 2,4- and 2,6-TDA, respectively, as compared to the unfractionated plasma. The gel filtration fractions 22–27 contained 107 and 119% of 2,4- and 2,6-TDA, respectively, as compared to the amounts in the ion exchange fractions (81–115). Agarose gel-electrophoresis and electroimmunoassay demonstrated that albumin, 2,4- and 2,6-TDA co-eluted in both ion-exchange and gel-filtration chromatography. Quantitative determination of albumin, 2,4- and 2,6-TDA also demonstrated that these components co-eluted using albumin-immunosorption chromatography. In addition, studies of affinity isolated IgG revealed that this fraction was devoid of 2,4- and 2,6-TDA. These results indicate that albumin is the major receptor molecule for 2,4- and 2,6-TDI in blood plasma and that these isocyanates form covalent bondings with albumin.


References

  1. O. Vandenplas, J. L. Malo, M. Saetta, C. E. Mapp and L. M. Fabbri, Br. J. Ind. Med., 1993, 50, 213 Search PubMed.
  2. X. Baur, W. Marek, J. Ammon, A. B. Czuppon, B. Marczynski, M. Raulf-Heimsoth, H. Roemmelt and G. Fruhmann, Int. Arch. Occup. Environ. Health, 1994, 66, 141 CrossRef CAS.
  3. G. Skarping, M. Dalene and P. Lind, J. Chromatogr. A, 1994, 663, 199 CrossRef CAS.
  4. A. Maitre, M. Berode, A. Perdrix, S. Romazini and H. Savolainen, Int. Arch. Occup. Environ. Health, 1993, 65, 97 CrossRef CAS.
  5. P. Lind, G. Skarping and M. Dalene, Anal. Chim. Acta, 1996, 333, 277 CrossRef CAS.
  6. G. R. Stark, Methods Enzymol., 1967, 11, 590 CrossRef CAS.
  7. C. S. Ted Tse and A. J. Pesce, Toxicol. Appl. Pharmacol., 1979, 51, 39 CrossRef CAS.
  8. P. Persson, M. Dalene, G. Skarping, M. Adamsson and L. Hagmar, J. Ind. Med., 1993, 50, 1111 Search PubMed.
  9. P. Lind, M. Dalene, G. Skarping and L. Hagmar, Occup. Environ. Med., 1996, 53, 94 CAS.
  10. A. L. Kennedy, T. R. Wilson, M. F. Stock, Y. Alaire and W. E. Brown, Arch. Toxicol., 1994, 68, 434 CrossRef CAS.
  11. A. L. Kennedy, L. Låstbom, G. Skarping, M. Dalene, Å. Ryrfeldt, P. Moldeus and W. E. Brown, Chem.-Biol. Interact., 1995, 98, 167 Search PubMed.
  12. B. L. Hill, M. L. Karol and W. E. Brown, Toxicologist, 1986, 6, 15 Search PubMed.
  13. J. O. Jeppsson, C. B. Laurell and B. Franzen, Clin. Chem. (Winston Salem, N.C.), 1979, 25, 629 Search PubMed.
  14. C. B. Laurell and E. J. McKay, Methods Enzymol., 1981, 73, 339 CrossRef CAS.
  15. P. J. Svendsen and S. Blirup-Jensen, Ed. DAKO A.S., 1991, Copenhagen.
Click here to see how this site uses Cookies. View our privacy policy here.