Determination of Primary Explosive Azides in Environmental Samples by Sequential Injection Amperometry

(Note: The full text of this document is currently only available in the PDF Version )

Roger T. Echols, Ryan R. James and Joseph H. Aldstadt


Abstract

The application of flow injection methodology to the determination of trace concentrations of primary explosives is presented. The approach is demonstrated with a sequential injection amperometric method for the determination of the azide ion (N3-). The proposed method can be applied to the determination of sodium azide or lead azide, a primary explosive, without regard to other sources of lead in environmental samples. The sequential injection system used for the analysis forms the basis for a proposed field-portable instrument for the analysis of primary explosives. A microporous gas permeable membrane in a gas diffusion unit (GDU) is used to separate the analyte from other anions that can also be oxidized at the amperometric cell. The behaviour of the GDU was optimized with respect to the pH of the donor stream and the timing of the preconcentration step. A study of anions that are commonly found in environmental samples showed that the species that will interfere with the analytical signal can be removed by the GDU. Results from three water samples that were spiked with 0.40 ppm of azide are presented. RSDs in the range 3–5% were typically obtained using the method. The useful working range of the method was linear up to 0.5 ppm and non-linear up to 20 ppm (second-order model). The limit of detection was 24.6 ppb.


References

  1. J. Yinon and S. Zitrin, Modern Methods and Applications in Analysis of Explosives, Wiley, New York, 1993 Search PubMed.
  2. E. L. Grove, R. S. Braman, H. F. Combs and S. B. Nicholson, Anal. Chem., 1962, 34, 682 CrossRef CAS.
  3. C. E. Roberson and C. M. Austin, Anal. Chem., 1957, 29, 855.
  4. A. Anton, J. G. Dodd and A. E. Harvey, Anal. Chem., 1960, 32, 1209 CrossRef CAS.
  5. L. Ilcheva and G. Todorova, Acta Chim. Acad. Sci. Hung., 1979,(102), 113 Search PubMed.
  6. M. C. Mehra and R. Garvie, Microchem. J., 1980, 25, 223 CrossRef CAS.
  7. E. A. Neves, E. de Oliveira and L. Sant'agostino, Anal. Chim. Acta, 1976, 87, 243 CrossRef CAS.
  8. D. W. Franco, E. A. Neves and J. F. Andrade, Anal. Lett., 1977, 10, 243 CAS.
  9. E. Kubaszewski and Z. Kurzawa, Chem. Anal. (Warsaw), 1985, 30, 609 Search PubMed.
  10. S. J. Swarin and R. A. Waldo, J. Liq. Chromatogr., 1982, 5, 597 CAS.
  11. J. Dziegiec and M. Ignaczak, Acta Chim. Soc. Sci. Lodz, 1971, 16, 69 Search PubMed.
  12. J. I. Bryant and M. D. Kemp, Anal. Chem., 1960, 32, 759.
  13. S. S. Hassan, F. M. El Zawawy, S. A. M. Marzouk and E. E. Elnemma, Analyst, 1992, 117, 1683 RSC.
  14. G. A. Ward and C. M. Wright, J. Electroanal. Chem., 1964, 8, 302 CrossRef CAS.
  15. J. Ruzicka and G. D. Marshall, Anal. Chim. Acta, 1990, 237, 329 CrossRef CAS.
  16. T. Gubeli, G. D. Christian and J. Ruzicka, Anal. Chem., 1991, 69, 2407 CrossRef.
  17. V. Kuban, Crit. Rev. Anal. Chem., 1992, 23, 323 Search PubMed and references cited therein.
  18. Z. Fang, Flow Injection Separation and Pre-concentration, VCH, New York, 1993 Search PubMed.
  19. A. N. Tsaouis and C. O. Huber, Anal. Chim. Acta, 1985, 178, 319 CrossRef.
  20. A. E. Martell and R. M. Smith, Critical Stability Constants, Plenum Press, New York, 1974 Search PubMed.
  21. T. F. Jenkins, US Army Corps of Engineers Special Report 90-38, Cold Regions Research and Engineering Laboratory, Hanover, NH, USA, 1990 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.