Optosensor for Cinchona Alkaloids With C18 Silica Gel as a Substrate

(Note: The full text of this document is currently only available in the PDF Version )

Zhilong Gong, Zhujun Zhang and Xiaofeng Yang


Abstract

A flow-through optosensor for cinchona alkaloids with C18 silica gel as a substrate is proposed. The sensor is developed in conjunction with a flow-injection analysis system and is based on the retention of the cinchona alkaloids on a C18 column and the enhancement of their fluorescence. The analytical performance characteristics of the proposed sensor for the detection and quantification of these alkaloids were as follows: the detection limits for quinine, cinchonine, quinidine and cinchonidine were 2.3, 31.6, 2.3 and 31.6 ng ml-1, respectively, with relative standard deviations of 0.9% for quinine and quinidine (20 ng ml-1, n = 7) and 1.1% for cinchonine and cinchonidine (4.0 µg ml-1, n = 7), respectively. Most of the common species did not interfere. The recommended method has been successfully tested for determination of quinine in pharmaceutical preparations and soft drinks.


References

  1. R. H. R. Manske and H. L. Holmes, The Alkaloids Chemistry and Physiology, Academic Press, New York, 1953, vol. III Search PubMed.
  2. K. C. John and C. Jelleff, The Pharmacologic Principles of Medical Practice, Williams and Wilkins, Baltimore, 5th edn., 1961 Search PubMed.
  3. P. L. Valenti, J. Assoc. Off. Anal. Chem., 1985, 68, 782 Search PubMed.
  4. K. Kral and G. Sontag, Lebensm Z., Unters. Forsch., 1982, 175, 22 Search PubMed.
  5. H. J. Jeuring, W. Van der Hoeven, P. Van Doornick and R. Ten Broeke, Lebensm, Z., Unters. Forsch., 1979, 169(4), 281 Search PubMed.
  6. G. L. Hoyer, D. C. Clawson, L. A. Brookshier, P. E. Nolan and F. I. Marcus, J. Chromatogr. B., Biomed. Appl., 1991, 110, 159 CrossRef.
  7. E. Brandsteterova, O. Romanova, D. Kralikova, L. Bozekova and W. Kriska, J. Chromatogr. A, 1994, 665(1), 101 CrossRef CAS.
  8. J. Klatsmanyi and P. Zala, Elelmiszervizsgalati Kozl., 1982, 28(1–2), 49 Search PubMed.
  9. P. R. Beljaars and P. J. Koken, J. Assoc. Off. Anal. Chem., 1972, 56, 1284 Search PubMed.
  10. A. Peterdi-Nagy, J. Sperlagh and M. Vegh, Acta Pharm. Hung., 1986, 56(3), 115 Search PubMed.
  11. Spanish Official Method, Health and Consumption Ministry, Publication services, Madrid, 1985 Search PubMed.
  12. A. I. Zhebentyaev and S. G. Duksina, Farmatsiya (Moscow), 1986, 35(2), 16 Search PubMed.
  13. J. C. Garcia Castro, M. J. Sanchez, M. A. Rodriguez Delgado and C. Diaz Romero, Mikrochim. Acta, 1993, 110(4–6), 263.
  14. G. G. Guilbault, Practical Fluorescence: Theory, Methods and Techniques, Marcel Decker, New York, 1973 Search PubMed.
  15. J. E. O'Reilly, J. Chem. Educ., 1975, 53, 610.
  16. M. R. A. Morgan, S. Bramham, A. J. Webb, R. J. Robins and M. J. C. Rhodes, Planta Med., 1985, 3, 237.
  17. C. W. Ward and M. R. A. Morgan, Food Addit. Contam., 1988, 5(4), 555 CAS.
  18. I. Koukli and A. C. Calokerinos, Anal. Chim. Acta, 1990, 236(2), 463 CrossRef CAS.
  19. Health Ministry of the People's Republic of China, Medical Law of the People's Republic of China, Chemical Industry Press, Beijing, vol. II, 1995 Search PubMed.
  20. H. Fischbach, Food Chemicals Codex, National Academic Press, London, 3rd edn., 1981 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.