Spectrofluorimetric Study of the Effects of Cyclodextrins on the Acid–Base Equilibria of Harmine and Harmane

(Note: The full text of this document is currently only available in the PDF Version )

L. Martín, M. A. Martín and B. del Castillo


Abstract

β-Carboline alkaloids are important compounds because they exhibit a variety of pharmacological actions. Their acid–base behaviour can be studied by spectrofluorimetry since these molecules present a remarkable native luminescence. Acid–base equilibria depend on the environment of the molecules and inclusion into cyclodextrin (CD) cavities shifts the acid–base equilibria and alters the apparent pKa values. The influence of CDs on the acid–base equilibria of the model β-carbolines harmine and harmane is described. β-CD and γ-CD and the modified β-CDs hydroxypropyl-β-CD (HPβ-CD), 2,6-di-O-methyl-β-CD (DMβ-CD) and 2,3,6-tri-O-methyl-β-CD (TMβ-CD) were used to form the corresponding complexes with harmine and harmane in the pH range 7.8–8.0. In these buffered solutions the complexes with the different CDs exhibit an emission band with resolved peaks at 360 and 380 nm corresponding to the neutral form of harmane and with a remarkable enhancement in the emission intensity compared with aqueous solution. In the case of the complexes with β-CD and γ-CD, both the cationic and the neutral emission bands appear. However, for γ-CD the cationic band is more intense than the neutral band, the inverse being true for β-CD. In homogeneous aqueous solution at this pH value the cationic band is the only one observed and therefore the presence of the neutral band indicates the formation of inclusion complexes. In the harmane–HPβ-CD complexes, the emission bands ascribed to the anionic form are observed after addition of NaOH. This emission is only observed in homogeneous aqueous solution in strongly alkaline media outside the normal pH range.


References

  1. M. Balón, J. Hidalgo, P. Guardado, M. A. Muñoz and C. Carmona, J. Chem. Soc. Perkin Trans. 2, 1993, 99 RSC.
  2. M. Balón, M. A. Muñoz, J. Hidalgo, M. C. Carmona and M. Sánchez, J. Photochem., 1987, 36, 193 CrossRef CAS.
  3. F. Tomas, I. Zabala and A. Olba, J. Photochem., 1983, 23, 355 CrossRef.
  4. E. Vander Donckt, Prog. React. Kinet., 1970, 5, 274 Search PubMed.
  5. R. Sakurovs and K. P. Ghiggino, J. Photochem., 1982, 18, 1 CrossRef CAS.
  6. M. L. Bender and M. Komiyama, Cyclodextrin Chemistry, Springer, Berlin, 1978 Search PubMed.
  7. M. Sbaï, S. Ait Lyazidi, D. A. Lerner, B. del Castillo and M. A. Martín, Anal. Chim. Acta, 1995, 303, 47 CrossRef CAS.
  8. N. Chattopadhyay, J. Photochem. Photobiol. A, 1991, 58, 31 CrossRef CAS.
  9. K. Takahashi, J. Chem. Soc. Chem. Commun., 1991, 929 RSC.
  10. K. A. Connors and J. M. Lipari, J. Pharm. Sci., 1976, 65, 379 CrossRef CAS.
  11. S. F. Lin and K. A. Connors, J. Pharm. Sci., 1983, 72, 1333 CrossRef CAS.
  12. M. R. Eftink, M. L. Andy, K. Bystrom, M. D. Perlmutter and D. S. Kristol, J. Am. Chem. Soc., 1989, 111, 6765 CrossRef CAS.
  13. K. A. Connors and T. W. Rosanske, J. Pharm. Sci., 1980, 69, 173 CrossRef CAS.
  14. K. Uekama, F. Hirayama, S. Nasu and N. Matsuo, Chem. Pharm. Bull., 1978, 26, 3477 CAS.
  15. R. A. Abramovitch and I. D. Spenser, Adv. Heterocycl. Chem., 1964, 3, 79 CAS.
  16. J. Dillon, A. Spector and K. Nakanishi, Nature (London), 1976, 259, 422 CAS.
  17. T. R. Bossin and K. F. Faull, J. Chromatogr., 1988, 428, 229.
  18. J. Moncrieff, J. Chromatrogr., 1989, 496, 269 Search PubMed.
  19. J. Szejtli, Cyclodextrins and Their Inclusion Complexes, Akadémiai Kiadó, Budapest, 1982 Search PubMed.
  20. L. Martín, M. A. Martín and B. del Castillo, J. Fluorescence, in the press Search PubMed.
  21. R. P. Frankewich, K. N. Thimmaiah and W. L. Hinze, Anal. Chem., 1991, 63, 2924 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.