Application of Two-dimensional Covariance Analysisto Infrared Spectroscopic Studies of Electrolyte Solutions

(Note: The full text of this document is currently only available in the PDF Version )

Peter W. Faguy and Natarajan Balachander


Abstract

Two-dimensional correlation analysis is applied, for the first time, to aid in structural studies of electrolyte solutions. Concentration dependent spectral features due to solute–solvent and solute–solute interactions can be separated from each other and their relative correlated changes established. The application of 2D correlation analysis, using a generalized covariance approach, is demonstrated using FTIR–ATR data for sub-molar concentrations of lithium perchlorate in diethyl ether. Although it has been established that, as the electrolyte salt concentration increases, the concentration of diethyl ether in the trans–trans conformation decreases relative to diethyl ether in the trans–gauche conformation, no evidence of these changes could be seen in the methyl and methylene C–H stretching bands. This region of the mid-IR spectra was previously thought to show no solute–solvent dependent bands. The 2D covariance analysis performed in this study shows clearly that methyl and methylene stretching modes can be associated uniquely with either the trans–trans or the trans–gauche conformer.


References

  1. G. M. Hieftje and G. Horlick, Am. Laboratory, 1981, 13, 76 Search PubMed.
  2. W. P. Aue, E. Bartholdi and R. R. Ernst, J. Chem. Phys., 1976, 64, 2229 CrossRef CAS.
  3. I. Noda, J. Am. Chem. Soc., 1989, 111, 8116 CrossRef CAS.
  4. I. Noda, Appl. Spectrosc., 1990, 44, 550 CAS.
  5. I. Noda, Appl. Spectrosc., 1993, 47, 1329 CAS.
  6. I. Noda, Nature, 1991, 350, 143 CrossRef CAS.
  7. C. Marcott, I. Noda and A. E. Dowery, Anal. Chem. Acta, 1991, 250, 131 Search PubMed.
  8. I. Noda, Y. Liu, Y. Ozaki and M. A. Czanrecki, J. Phys. Chem., 1995, 99, 3068 CrossRef CAS.
  9. Y. Liu, Y. Ozaki and I. Noda, J. Phys. Chem., 1996, 100, 7326 CrossRef CAS.
  10. M. Osawa, K. Yoshii, Y. Hibino, T. Nakano and I. Noda, J. Electroanal. Chem., 1997, 426, 11 CrossRef CAS.
  11. P. W. Faguy and N. S. Marinkovic, Anal. Chem., 1995, 67, 2791 CrossRef CAS.
  12. S. Schantz, L. M. Torell. and J. R. Stevens, J. Appl. Phys., 1988, 64, 2038 CrossRef CAS.
  13. D. Battisti, G. A. Nazri, B. Klassen and R. Aroca, J. Phys. Chem., 1993, 97, 5826 CrossRef CAS.
  14. T. S. Perelygin, in Ionic Solvation, ed. Krestov, G. A., Nauka, Moscow, 1987, ch. 3 Search PubMed.
  15. D. W. James and R. E. Mayes, Aust. J. Chem., 1982, 35, 1785 CAS.
  16. W. H. Leong and D. W. James, Aust. J. Chem., 1969, 22, 499 CAS.
  17. P. W. Faguy, W. R. Fawcett and D. L. Patrick, J. Chem. Soc. Faraday Trans., 1991, 87, 2961 RSC.
  18. W. R. Fawcett, P. W. Faguy, C. A. Foss and A. J. Motheo, J. Chem. Soc. Faraday Trans., 1993, 89, 811 RSC.
  19. A. Regis and J. Corset, Can. J. Chem., 1973, 51, 3577 CAS.
  20. D. W. James and R. E. Mayes, Aust. J. Chem., 1982, 35, 1775 CAS.
  21. S. Hyodo and K. Okabayashi, Electrochim. Acta, 1970, 34, 1551 CrossRef CAS.
  22. R. M. Pagni, G. W. Kabalka, S. Bains, M. Plesco, J. Wilson and J. Bartmess, J. Org. Chem., 1993, 58, 3130 CrossRef CAS.
  23. G. Desimoni, G. Faita, P. P. Righetti and G. Tacconi, Tetrahedron, 1991, 47, 8399 CrossRef CAS.
  24. R. Braun and J. Sauer, Chem. Ber., 1986, 119, 1269 CAS.
  25. P. A. Grieco, J. J. Nunes and M. D. Gaul., J. Am. Chem. Soc., 1990, 112, 4595 CrossRef CAS.
  26. M. A. Forman and W. P. Dailey, J. Am. Chem. Soc., 1991, 113, 2761 CrossRef CAS.
  27. R. G. Snyder and G. Zerbi, Spectrochim. Acta, 1967, 23A, 391 CrossRef.
  28. H. Wieser, W. G. Laidlaw, P. J. Krueger and H. Fuhrer, Spectrochim. Acta, 1968, 24A, 1055 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.