Structure-driven Retention Optimization Model for Reversed Phase Thin-layer Chromatography

(Note: The full text of this document is currently only available in the PDF Version )

Waruna Kiridena and Colin F. Poole


Abstract

The solvation parameter model is used to characterize the retention properties of a cyanopropylsiloxane-bonded, silica-based high-performance thin-layer chromatography layer with methanol–water mobile phases. Dipole-type interactions do not contribute to retention while the layer cohesion and hydrogen-bond acidity of water dominate retention for predominantly aqueous mobile phases, and although retention is weak for predominantly methanol mobile phases, retention is favored by lone pair–lone pair electron interactions and diminished by hydrogen-bond type interactions in the mobile phase. The solvation parameter model is used to construct retention maps for the solvent optimization of the separation of steroids with an average difference of 0.046 RF units between experimental and predicted values.


References

  1. C. F. Poole and S. K. Poole, Anal. Chem., 1994, 66, 27A CAS.
  2. C. F. Poole and S. K. Poole, J. Chromatogr. A, 1995, 703, 573 CrossRef CAS.
  3. C. F. Poole and S. K. Poole, Chromatography Today, Elsevier, Amsterdam, 1991, pp. 649–734 Search PubMed.
  4. I. D. Wilson and C. F. Poole, J. Planar Chromatogr., submitted for publication Search PubMed.
  5. C. F. Poole and W. P. N. Fernando, J. Planar Chromatogr., 1993, 6, 357 CAS.
  6. C. F. Poole and W. P. N. Fernando, J. Planar Chromatogr., 1992, 5, 323 CAS.
  7. A.-M. Siouffi, J. Chromatogr., 1991, 556, 81 CrossRef CAS.
  8. Handbook of Thin-Layer Chromatography, ed. Sherma, J., and Fried, B., Marcel Dekker, New York, 2nd. edn., 1996 Search PubMed.
  9. Sz. Nyiredy, K. Dallenbach-Tolke and O. Sticher, J. Planar Chromatogr., 1988, 1, 336 CAS.
  10. Sz. Nyiredy and Z. Fater, J. Planar Chromatogr., 1995, 8, 341 CAS.
  11. P. Vuorela, E.-L. Rahko, R. Hiltunen and H. Vuorela, J. Chromatogr. A, 1994, 670, 191 CrossRef CAS.
  12. P. Harmala, H. Vuorela, E.-L. Ranko and R. Hiltunen, J. Chromatogr., 1992, 593, 329 CrossRef CAS.
  13. P. Harmala, J. Planar Chromatogr., 1991, 4, 460 CAS.
  14. F. L. Birkinshaw and D. G. Waters, J. Planar Chromatogr., 1995, 8, 319 CAS.
  15. D. S. Seibert and C. F. Poole, Chromatographia, 1995, 41, 51 CAS.
  16. D. S. Seibert, C. F. Poole and M. H. Abraham, Analyst, 1996, 121, 511 RSC.
  17. C. F. Poole, S. K. Poole, D. S. Seibert and C. M. Chapman, J. Chromatogr. B, 1997, 689, 245 CrossRef CAS.
  18. M. H. Abraham, C. F. Poole and S. K. Poole, J. Chromatogr. A, 1996, 749, 247 CrossRef CAS.
  19. M. H. Abraham, H. S. Chada, G. S. Whiting and R. C. Mitchell, J. Pharm. Sci., 1994, 83, 1085 CAS.
  20. M. H. Abraham, H. S. Chadha and R. C. Mitchell, J. Pharm. Pharmacol., 1995, 47, 8 Search PubMed.
  21. M. H. Abraham, Chem. Soc. Rev., 1993, 22, 73 RSC.
  22. M. H. Abraham, in Quantitative Treatments of Solute/Solvent Interactions, ed. Politzer, P., and Murray, J. S., Elsevier, Amsterdam, 1994, pp. 83–134 Search PubMed.
  23. A. H. Lowery, C. J. Cramer, J. J. Urban and G. R. Famini, Comput. Chem., 1995, 19, 209 CrossRef.
  24. C. J. Cramer, G. R. Famini and A. H. Lowery, Acc. Chem. Res., 1993, 26, 599 CrossRef CAS.
  25. M. H. Abraham and H. S. Chada, in Lipophilicity in Drug Action and Toxicology, ed. Pliska, V., Testa B., and van de Waterbeemed, H., VCH, Weinheim, Germany, 1996, pp. 311–337 Search PubMed.
  26. R. J. Maxwell, S. W. Yeisley and J. Unruh, J. Liquid Chromatogr., 1990, 13, 2001 CAS.
  27. K. Dross, S. Sonntag and R. Mannhold, J. Chromatogr., 1993, 639, 287 CrossRef CAS.
  28. C. F. Poole, M. E. Coddens, H. T. Butler, S. A. Schuette, S. J. J. Ho, S. Khatib, L. Piet and K. K. Brown, J. Liquid Chromatogr., 1985, 8, 2875 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.