Room-temperature catalytic fluorination of C1 and C2 chlorocarbons and chlorohydrocarbons on fluorinated Fe3O4 and Co3O4
Abstract
A study of the room-temperature reactions of a series of C1 and C2 chlorohydrocarbon and chlorocarbon substrate molecules with fluorinated iron (II, III) oxide and cobalt (II, III) oxide has been conducted. The results show that fluorinated iron(II, III) oxide exhibits an ability to incorporate fluorine into the following substrates in the order: Cl2CCCl2 > H2C
CCl2 > CH3CCl3 > CHCl3 > CH2Cl2 > CH2ClCCl3 > CCI4 > CHCl2CHCl2. The fluorinated cobalt(II,III) oxide gave the reactivity series CHCl3 > CCl4 > H2C
CCl2 > CHCl2CHCl2 > CH2CI2 > CH3CCl3 > CCl2CCl2 > CH2ClCl3. Reactions of C1 chlorohydrocarbon or chlorocarbon probe molecules with fluorinated Fe3O4 gave predominately C1 chlorofluorohydrocarbon and chlorofluorocarbon products, respectively, whereas fluorinated cobalt(II, III) oxide produced predominately C2 chlorofluorohydrocarbon and chlorofluorocarbons. For fluorinated Co3O4 the distribution of C2 products obtained from C1 chlorohydrocarbon precursor molecules is consistent with the formation of radical intermediates at strong Lewis acid surfaces. C2 chlorohydrocarbons exhibit a fluorine for chlorine (F-for-Cl) exchange reaction through the catalytic dehydrochlorination of the substrate to the alkenic intermediate. The F-for-Cl exchange process was dependent upon the ability of the substrate material to undergo dehydrochlorination; the inability of a substrate to undergo dehydrochlorination results in the fluorination process proceeding through the formation of chlorocarbon or chlorohydrocarbon radical intermediates.