Issue 6, 1984

Interaction between zeolites and cluster compounds. Part 2.—Thermal decomposition of iron pentacarbonyl on zeolites

Abstract

Thermal decomposition in a thermobalance of Fe(CO)5 adsorbed on alkali-metal, hydrogen-Y, dealuminated Y, L and omega zeolites proceeds stepwise via slow decarbonylation at low and high temperatures, separated by a fast endothermic reaction. Average CO/Fe ratios have been determined after each step. From i.r. results the former intermediates are assigned to species bearing bridging CO, whereas reaction products with CO/Fe < 1 are associated with highly unsaturated carbonyl clusters in strong interaction with the zeolite.

The thermal stability of zeolite/Fe(CO)5 adducts as well as of the intermediates increases with the electron-donor properties of the matrix and can be rationalized using the Sanderson electronegativity concept. Iron loadings ranging from 2.4 wt % in zeolite L up to 10 wt % with NaY and HY are obtained by decomposition in inert atmosphere. Under vacuum conditions loss of metal up to 50% is observed. Metallic iron clusters are the final decomposition products in alkali-metal zeolites, as probed by NO adsorption. In HY part of the metallic iron is oxidized to FeII ions, which are located at cation positions.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans. 1, 1984,80, 1391-1407

Interaction between zeolites and cluster compounds. Part 2.—Thermal decomposition of iron pentacarbonyl on zeolites

T. Bein and P. A. Jacobs, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 1391 DOI: 10.1039/F19848001391

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements