Issue 11, 1983

One-dimensional mathematical treatment of small-angle X-ray scattering from a system of alternating lamellar phases

Abstract

A theory for the small-angle X-ray scattering (SAXS) from alternating lamellar phases is formulated on the basis of the concept that the scattering is due to positive and negative density deviations from the average density of the system. In contrast to all previous theories, the equation for the scattered intensity satisfies Babinet's reciprocity theorem for crystallinity (in the case of a semicrystalline polymer) or volume fraction (for a block copolymer), when there is no fluctuation in the thickness of the alternating lamellar phases. It is also shown that in order to obtain the correct SAXS intensity distribution for the case where the thickness of the lamellar phases shows no fluctuation, the IC term, as defined by Hosemann and Blundell, must be included in the summation.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans. 2, 1983,79, 1593-1605

One-dimensional mathematical treatment of small-angle X-ray scattering from a system of alternating lamellar phases

M. Matsuo, C. Sawatari, M. Tsuji and R. St. J. Manley, J. Chem. Soc., Faraday Trans. 2, 1983, 79, 1593 DOI: 10.1039/F29837901593

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements