Issue 0, 1977

Binding-induced conformational transition of sodium poly-L-glutamate by iron(III) complex ions in aqueous solution

Abstract

The binding of pseudo-octahedral trans- and cis-FeIII complex ions by sodium poly-L-glutamate (PLG) and dextransulphate (DS) in aqueous solution at about pH 7 has been studied. Equilibrium dialysis and “phase-separation” data show that the affinity for the complex counterions by both polyelectrolytes follows the order trans-[Fe(tetpy)(OH)2]+ > cis-[Fe(pmen)(OH)2]+. Evidence of a specific site binding, leading to a marked “renaturation” effect on the charged polypeptide, is produced in the case of the trans-FeIII-quaterpyridine compound. The binding isotherm of the trans-complex + PLG system and the circular dichroism patterns of the polypeptide as a function of the bound-trans-complex to polymer-residue ratio were successfully treated by a two-state model for the polyelectrolyte and a preferential association of the complex ions to the helical conformation of the polymeric matrix. All these features are examined in the light of the structural characteristics of the interacting species. The implications of the different stereochemistry of the other complex ions studied on the binding process with PLG are also discussed.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans. 1, 1977,73, 213-229

Binding-induced conformational transition of sodium poly-L-glutamate by iron(III) complex ions in aqueous solution

M. Branca and B. Pispisa, J. Chem. Soc., Faraday Trans. 1, 1977, 73, 213 DOI: 10.1039/F19777300213

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements