Skip to main content
Log in

Effect of end group polarity upon the lower critical solution temperature of poly(2-isopropyl-2-oxazoline)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Thermo-sensitive poly(2-isopropyl-2-oxazoline)s (PiPrOx) were functionalized with end groups of different polarity by living cationic ring-opening polymerization using the initiator and/or termination method as well as sequential block copolymerization with 2-methyl-2-oxazoline. As end groups, methyl, n-nonyl, piperidine, piperazine as well as oligo(ethylenglygol) and oligo(2-methyl-2-oxazoline) were introduced quantitatively. The lower critical solution temperature (LCST) of the aqueous solutions was investigated. The introduction of hydrophobic end groups decreases the LCST, while hydrophilic polymer tails raise the cloud point. In comparison to poly(N-isopropyl acrylamide), the impact of the end group polarity upon the modulation of the LCST was found to be significantly stronger. Surprisingly, terminal oligoethylenegycol units also decrease the LCST of PiPrOx, thus acting as moieties of higher hydrophobicity as compared to the poly(2-oxazoline) main chain. Together with the possible variation of the side group polarity, this allows a broad modulation of the LCST of poly(2-oxazoline)s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gil ES, Hudson SA (2004) Prog Polym Sci 29:1173

    Article  CAS  Google Scholar 

  2. Chung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano TJ (1998) Control Release 53:119

    Article  CAS  Google Scholar 

  3. Uyama H, Kobayashi S (1992) Chem Lett 9:1643

  4. Huber S, Jordan R (2008) Colloid Polym Sci 286:395

    Article  CAS  Google Scholar 

  5. Park JS, Kataoka K (2007) Macromolecules 40:3599

    Article  CAS  Google Scholar 

  6. Park JS, Kataoka K (2006) Macromolecules 39:6622

    Article  CAS  Google Scholar 

  7. Xia Y, Burke NAD, Stöver HDH (2006) Macromolecules 39:2275

    Article  CAS  Google Scholar 

  8. Xia Y, Yin XC, Burke NAD, Stöver HDH (2005) Macromolecules 38:5937

    Article  CAS  Google Scholar 

  9. Ringsdorf H, Venzmer J, Winnik FM (1991) Macromolecules 24:1678

    Article  CAS  Google Scholar 

  10. Ringsdorf H, Simon J, Winnik FM (1992) Macromolecules 25:5353

    Article  CAS  Google Scholar 

  11. Bae YH, Okano T, Hsu R, Kim SW (1987) Makromol Rapid Commun 8:481

    Article  CAS  Google Scholar 

  12. Kujawa P, Segui F, Shaban S, Diab C, Okada Y, Tanaka F, Winnik FM (2006) Macromolecules 39:341

    Article  CAS  Google Scholar 

  13. Winnik FM, Davidson AR, Hamer GK, Kitano H (1992) Macromolecules 25:1876

    Article  CAS  Google Scholar 

  14. Christova D, Velichkova R, Loos W, Goethals EJ, Du Prez F (2003) Polymer 44:2255

    Article  CAS  Google Scholar 

  15. Lin PY, Clash C, Pearce EM, Kwei TK, Aponte MA (1988) J Polym Sci, Part B: Polym Phys 26:603

    Article  CAS  Google Scholar 

  16. Goddard P, Hutchinson LE, Brown J, Brookmann LJ (1989) J Control Release 10:5

    Article  CAS  Google Scholar 

  17. Gaertner FC, Luxenhofer R, Blechert B, Jordan R, Essler MJ (2007) Control Release 119:291

    Article  CAS  Google Scholar 

  18. Zalipsky S, Hansen CB, Oaks JM, Allen TM (1996) J Pharm Sci 85:133

    Article  CAS  Google Scholar 

  19. Woodle MC, Engbers CM, Zalipsky S (1994) Biocon Chem 5:493

    Article  CAS  Google Scholar 

  20. Lee SC, Kim C, Kwon IC, Chung H, Jeong SY (2003) J Control Release 89:437

    Article  CAS  Google Scholar 

  21. Jordan R, Martin K, Räder HJ, Unger KK (2001) Macromolecules 34:8858

    Article  CAS  Google Scholar 

  22. Zarka MT, Nuyken O, Weberskirch R (2003) Chem Europ J 9:3228

    Article  CAS  Google Scholar 

  23. Krause JO, Zarka MT, Anders U, Weberskirch RO, Nuyken MR Buchmeiser A (2003) Chem Int Ed 42:5965

    Article  CAS  Google Scholar 

  24. Odian G, Shi F (1993) Macromolecules 26:17

    Article  CAS  Google Scholar 

  25. Hsieh BR, Litt MH (1986) Macromolecules 19:516

    Article  CAS  Google Scholar 

  26. Hsieh BR, Litt MH (1985) Macromolecules 18:1388

    Article  CAS  Google Scholar 

  27. Persigehl P, Jordan R, Nuyken O (2000) Macromolecules 33:6977

    Article  CAS  Google Scholar 

  28. Chujo Y, Sada K, Saegusa T (1993) Macromolecules 26:6315

    Article  CAS  Google Scholar 

  29. Chujo Y, Sada K, Saegusa T (1990) Macromolecules 23:2636

    Article  CAS  Google Scholar 

  30. Kotre T, Nuyken O, Weberskirch R (2002) Macromol Rapid Commun 23:871

    Article  CAS  Google Scholar 

  31. Cesana S, Auernheimer J, Jordan R, Kessler H, Nuyken O (2006) Macromol Chem Phys 207:183

    Article  CAS  Google Scholar 

  32. Cesana S, Kurek A, Baur MA, Auernheirner J, Nuyken O (2007) Macromol Rapid Commun 28:608

    Article  CAS  Google Scholar 

  33. Taubmann C, Luxenhofer R, Cesana S, Jordan R (2005) Macromol Biosci 5:603

    Article  CAS  Google Scholar 

  34. Luxenhofer R, Lopez-Garzia M, Frank A, Kessler H, Jordan R (2006) PMSE Reprints 95:283

    CAS  Google Scholar 

  35. Kobayashi S (1990) Prog Polym Sci 15:751

    Article  CAS  Google Scholar 

  36. Chujo Y, Sada K, Saegusa T (1990) Macromolecules 23:2693

    Article  CAS  Google Scholar 

  37. Luxenhofer R, Jordan R (2006) Macromolecules 39:3509

    Article  CAS  Google Scholar 

  38. Chujo Y, Ihara E, Kure S, Saegusa T (1993) Macromolecules 26:5681

    Article  CAS  Google Scholar 

  39. Park JS, Akiyama Y, Winnik FM, Kataoka K (2004) Macromolecules 37:6786

    Article  CAS  Google Scholar 

  40. Meyer M, Antonietti M, Schlaad H (2007) Soft Matter 3:430

    Article  CAS  Google Scholar 

  41. Meyer M, Schlaad H (2006) Macromolecules 39:3967

    Article  CAS  Google Scholar 

  42. Witte H, Seeliger W (1974) Liebigs Ann Chem 1974:996

    Article  Google Scholar 

  43. Schmidt M, Amstutz R, Crass G, Seebach D (1980) Chem Ber 113:1691

    Article  CAS  Google Scholar 

  44. Lüdtke K, Jordan R, Hommes P, Nuyken O, Naumann CA (2005) Macromol Biosci 5:384

    Article  Google Scholar 

  45. Kobayashi S, Iijima S, Igarashi T, Saegusa T (1987) Macromolecules 20:1729

    Article  CAS  Google Scholar 

  46. Kobayashi S, Uyama H, Higuchi N, Saegusa T (1990) Macromolecules 23:54

    Article  CAS  Google Scholar 

  47. Aoi K, Okada M (1996) Prog Polym Sci 21:151

    Article  CAS  Google Scholar 

  48. Kobayashi S, Uyama H, Narita Y, Ishiyama JI (1992) Macromolecules 25:3232

    Article  CAS  Google Scholar 

  49. Luxenhofer R, Bezen M, Jordan R (2008) Macromol Rapid Commun 29:1509

    Article  CAS  Google Scholar 

  50. Gross A, Maier G, Nuyken O (1996) Macromol Chem Phys 197:2811

    Article  CAS  Google Scholar 

  51. Bonne TB, Papadakis CM, Lüdtke K (2007) Jordan R Colloid Polym Sci 285:491

    Article  CAS  Google Scholar 

  52. Chung JE, Yokoyama M, Suzuki K, Aoyagi T, Sakurai Y, Okano T (1997) Colloids and Surfaces B-Biointerfaces 9:37

    Article  CAS  Google Scholar 

  53. Bonne TB, Lüdtke K, Jordan R, Stepanek P, Papadakis CM (2004) Colloid Polym Sci 282:1425

    Article  CAS  Google Scholar 

  54. Papadakis CM, Ivanova R, Lüdtke K, Mortensen K, Pranzas PK, Jordan R (2007) J Appl Crystallogr 40:S361

    Article  CAS  Google Scholar 

  55. Bonne TB, Lüdtke K, Jordan R, Papadakis CM (2007) Macromol Chem Phys 208:1402

    Article  CAS  Google Scholar 

  56. Bortenschlager M, Schöllhorn N, Wittmann A, Weberskirch R (2007) Chem Europ J 13:520

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) through the project JO287/4-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Jordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, S., Hutter, N. & Jordan, R. Effect of end group polarity upon the lower critical solution temperature of poly(2-isopropyl-2-oxazoline). Colloid Polym Sci 286, 1653–1661 (2008). https://doi.org/10.1007/s00396-008-1942-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-008-1942-7

Keywords

Navigation