Skip to main content
Log in

Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

A Correction to this article was published on 01 December 2012

This article has been updated

Abstract

Radical ions of organic dyes are highly reactive species and have been studied for decades by transient absorption spectroscopy and pulse radiolysis experiments in oxygen-depleted solution. Here we show by continuous wave EPR, absorption, and fluorescence experiments that the triplet state of rhodamine dyes can be photoreduced by thiols to form stable radical anions in aqueous solution with a lifetime of up to several hours. Our data demonstrate that reduction of the triplet state and photoinduced oxidation of reactive intermediates by oxygen represents a general mechanism for reversible photoswitching of dyes in aqueous thiol-containing solutions highlighting the key role of molecular oxygen for super-resolution fluorescence imaging. Since cells contain the thiol glutathione at millimolar concentrations and reactive oxygen species are formed as side products our findings are of consequence for live cell fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. P. Pacher, J. S. Beckman and L. Liaudet, Nitric oxide and peroxynitrite in health and disease, Physiol. Rev., 2007, 87, 315–424.

    Article  CAS  PubMed  Google Scholar 

  2. M. Gomberg, An instance of trivalent carbon triphenylmethyl, J. Am. Chem. Soc., 1900, 22, 757–771.

    Article  Google Scholar 

  3. G. M. Rosen, B. E. Britigan, H. J. Halpern and S. Pou, Free radicals: biology and detection by spin trapping, Oxford University Press, Oxford 1999.

    Google Scholar 

  4. M. D. E. Forbes and Time-Resolved, (CW) Electron paramagnetic resonance spectroscopy: an overview of the technique and its use in organic photochemistry, Photochem. Photobiol., 1997, 65, 73–81.

    Article  CAS  Google Scholar 

  5. G. Grampp, et al., ESR and ENDOR investigations on various Wurster’s radical cations in solution. Experimental results, theoretical ab initio, and DFT calculations, Monatsh. Chem., 2005, 136, 519–536.

    Article  CAS  Google Scholar 

  6. P. C. Beaumont, D. G. Johnson and B. J. J. Parsons, Excited state and free radical properties of rhodamine dyes in aqueous solution: A laser flash photolysis and pulse radiolysis study, J. Photochem. Photobiol., A, 1997, 107, 175–183.

    Article  CAS  Google Scholar 

  7. S. Doose, H. Neuweiler and M. Sauer, Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules, ChemPhysChem, 2009, 10, 1389–1398.

    Article  CAS  PubMed  Google Scholar 

  8. R. H. Kayser, R. Young and The, photoreduction of methylene blue by amines - i. a flash photolysis study of the reaction between triplet methylene blue and amines, Photochem. Photobiol., 1976, 24, 395–401.

    Article  CAS  Google Scholar 

  9. H. Görner, Oxygen uptake induced by electron transfer from donors to the triplet state of methylene blue and xanthene dyes in air-saturated aqueous solution, Photochem, Photochem. Photobiol. Sci., 2008, 7, 371–376.

    Article  PubMed  CAS  Google Scholar 

  10. H. Giloh and J. W. Sedat, Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate, Science, 1982, 217, 1252–1255.

    Article  CAS  PubMed  Google Scholar 

  11. R. Zondervan, F. Kulzer, S. B. Orlinski and M. Orrit, Photoblinking of rhodamine 6G in poly(vinyl alcohol): radical dark state formed through the triplet, J. Phys. Chem., 2003, 107, 6770–6776.

    Article  CAS  Google Scholar 

  12. I. Rasnik, S. A. McKinney and T. Ha, Nonblinking and long-lasting single-molecule fluorescence imaging, Nat. Methods, 2006, 3, 891–893.

    Article  CAS  PubMed  Google Scholar 

  13. J. Widengren, A. Chmyrov, C. Eggeling, P. A. Löfdahl and C. A. M. Seidel, Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy, J. Phys. Chem. A, 2007, 111, 429–440.

    Article  CAS  PubMed  Google Scholar 

  14. M. Orrit, Chemical and physical aspects of charge transfer in the fluorescence intermittency of single molecules and quantum dots, Photochem. Photobiol. Sci., 2010, 9, 637–642.

    Article  CAS  PubMed  Google Scholar 

  15. J. Vogelsang, R. Kasper, B. Person, M. Heilemann, M. Sauer and P. Tinnefeld, A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes, Angew. Chem., Int. Ed., 2008, 47, 5465–5469.

    Article  CAS  Google Scholar 

  16. R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell and M. Sauer, Single-molecule STED microscopy with photostable organic fluorophores, Small, 2010, 6, 1379–1384.

    Article  CAS  PubMed  Google Scholar 

  17. J. Lippincott and G. H. Patterson, Development and use of fluorescent protein markers in living cells, Science, 2003, 300, 87–91.

    Article  CAS  Google Scholar 

  18. N. C. Shaner, G. H. Patterson and M. W. Davidson, Advances in fluorescent protein technology, J. Cell Sci., 2007, 120, 4247–4260.

    Article  CAS  PubMed  Google Scholar 

  19. M. Heilemann, P. Dedecker, J. Hofkens and M. Sauer, Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification, Laser Photonics Rev., 2009, 3, 180–202.

    Article  CAS  Google Scholar 

  20. M. B. Elowitz, M. G. Surette, P. E. Wolf, J. Stock and S. Leibler, Curr. Biol., 1997, 7, 809–812.

    Article  CAS  PubMed  Google Scholar 

  21. A. M. Bogdanov, A. S. Mishin, I. V. Yampolsky, V. V. Belousov, D. M. Chudakov, F. V. Subach, V. V. Verkhusa, S. Lukyanov and K. A. Lukyanov, Green fluorescent proteins are light-induced electron donors, Nat. Chem. Biol., 2009, 5, 459–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S.W. Hell, Far-field optical nanoscopy, Science, 2007, 316, 1153–1158.

    Article  CAS  PubMed  Google Scholar 

  23. M. J. Rust, M. Bates and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods, 2006, 3, 793–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lidwasser, S. Olenych, J. S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz and H. F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution, Science, 2006, 313, 1642–1645.

    Article  CAS  PubMed  Google Scholar 

  25. M. Heilemann, S. van de Linde, A. Mukherjee and M. Sauer, Superresolution imaging with small organic fluorophores, Angew. Chem., Int. Ed., 2009, 48, 6903–6908.

    Article  CAS  Google Scholar 

  26. J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer and P. Tinnefeld, Controlling the fluorescence of ordinary oxazine dyes for singlemolecule switching and superresolution microscopy, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 8107–8112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. E. Klimtchuk, M. A. J. Rodgers and D. C. Neckers, Laser flash photolysis studies of novel xanthene dye derivatives, J. Phys. Chem., 1992, 96, 9817–9820.

    Article  CAS  Google Scholar 

  28. E. Madej and P. Wardman, The oxidizing power of the glutathione thiyl radical as measured by its electrode potential at physiological pH, Arch. Biochem. Biophys., 2007, 462, 94–102.

    Article  CAS  PubMed  Google Scholar 

  29. P. Wardmann, Reduction potentials of one-electron couples involving free radicals in aqueous solution, J. Phys. Chem. Ref. Data, 1989, 18, 1637–1755.

    Article  Google Scholar 

  30. R. Menzel and E. Thiel, Intersystem crossing rate constants of rhodamine dyes: influence of the amino-group substitution, Chem. Phys. Lett., 1998, 291, 237–243.

    Article  CAS  Google Scholar 

  31. U. M. Burner, W. Jantschko and C. Obinger, Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II, FEBS Lett., 1999, 443, 290–296.

    Article  CAS  PubMed  Google Scholar 

  32. U. Burner and C. Obinger, Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidise, FEBS Lett., 1997, 411, 269–274.

    Article  CAS  PubMed  Google Scholar 

  33. H. Shroff, C. G. Galbraith, J. A. Galbraith and E. Betzig, Livecell photoactivated localization microscopy of nanoscale adhesion dynamics, Nat. Methods, 2008, 5, 417–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S. van de Linde, S. Wolter, M. Heilemann and M. Sauer, The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging, J. Biotechnol., 2010, 149, 260–266.

    Article  PubMed  CAS  Google Scholar 

  35. D. T. Sawyer and J. S. Valentine, How super is superoxide?, Acc. Chem. Res., 1981, 14, 393–400.

    Article  CAS  Google Scholar 

  36. J. A. Campbell, Kinetics - Early and often, J. Chem. Educ., 1963, 40, 578–583.

    Article  CAS  Google Scholar 

  37. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld and M. Sauer, Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes, Angew. Chem., Int. Ed., 2008, 47, 6172–6176.

    Article  CAS  Google Scholar 

  38. J. R. Lenhard and A. D. Cameron, Electrochemistry and electronic spectra of cyanine dye radicals in acetonitrile, J. Phys. Chem., 1993, 97, 4916–4925.

    Article  CAS  Google Scholar 

  39. G. T. Dempsey, M. Bates, W. E. Kowtoniuk, D. R. Liu, R. Y. Tsien and X. Zhuang, Photoswitching mechanism of cyanine dyes, J. Am. Chem. Soc., 2009, 131, 18192–18193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. H. Sies, Glutathione and its role in cellular functions, Free Radical Biol. Med., 1999, 27, 916–921.

    Article  CAS  Google Scholar 

  41. R. Wombacher, M. Heidbreder, S. van de Linde, M. P. Sheetz, M. Heilemann, V. W. Cornish and M. Sauer, Live-cell super-resolution imaging with trimethoprim conjugates, Nat. Methods, 2010, 7, 717–719.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Sauer.

Additional information

Electronic supplementary information (ESI) available: Fig. S1-S6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van de Linde, S., Krstić, I., Prisner, T. et al. Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem Photobiol Sci 10, 499–506 (2011). https://doi.org/10.1039/c0pp00317d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00317d

Navigation