Novel synthesis of dual-suspended architectures between Si-pillars for enhanced photocatalytic performance†

Yu Sun,‡a Rui Chen,‡b Jihyeon Oh,a Bongyoung Yoo*a and Haiwon Lee*bb

A facile approach is developed to synthesize a dual-suspended architecture, in which 3D carbon nanotube (CNT) networks are first bridged between Si pillars through a catalyzed method and suspended oxide architectures are subsequently synthesized on CNT networks through pulse electrodeposition. These dual-suspended structures show excellent photocatalytic activity toward methylene blue (MB) photo-decomposition under visible light illumination.

Metal oxides are the most widely used materials in sensors, environmental pollution control, and energy conversion and storage. Among metal oxides, Cu2O has attracted a lot of attention as it is inexpensive, plentiful, environmentally friendly, and readily available. Furthermore, Cu2O is a p-type semiconductor with a direct bandgap of 2.0–2.2 eV, which has been studied to produce artificial networks for use in photocatalysis. It was documented that the catalytic abilities of catalysts are strongly influenced by surface electronic structures, which partially rely on their morphologies and exposed surface area. In our previous work, we electrochemically deposited Cu2O on Ti/Au/Si wafer substrates as photocatalysts. However, the photocatalytic abilities were limited due to the insufficient exposure of photocatalysts. Therefore, we hypothesized that the growth of suspended Cu2O would significantly increase the exposed surface area of catalysts and further enhance the catalytic properties.

Previously, numerous different kinds of materials have been studied to produce artificial networks. Among these materials, CNTs are considered as the most suitable candidates because of their excellent chemical, mechanical, and electrical properties. Therefore, in this work, CNT networks were employed as nano-substrates, on which the preparation of metal oxide architectures was carried out through pulse electrodeposition, forming dual-suspended architectures for enhanced photocatalytic performance.

As illustrated in Scheme 1, we first fabricated CNT networks as bridging materials for the growth of a suspended metal oxide architecture between Si pillars (abbreviated to SiP) using a low-pressure thermal chemical vapor deposition (LPTCV) method (abbreviated CNT–SiP). Then, Cu2O was pulse electrodeposited by using CNT–SiP as a working electrode, as described in a previous report. The details are shown in the ESI.† As shown in Fig. 1(A), CNT networks were massively synthesized between Si pillars. CNTs were also found around each Si pillar as the CNT growth started on the Si pillar substrates. TEM images of CNTs further confirmed the successful synthesis of carbon nanotube structures with an average width of ~14 nm, as shown in Fig. 1(B) and (C). To prepare a suspended Cu2O architecture on CNT networks (abbreviated Cu–CNT–SiP), pulse electrodeposition was carried out by taking CNT–SiP as a working electrode in a mixed solution containing 0.01 M cupric acetate and 0.1 M sodium acetate. As shown in Fig. 1(D), a large quantity of octahedral and quasi-octahedral structures penetrated by CNTs was successfully synthesized. The high-magnification SEM image (Fig. 1(E)) and TEM image (Fig. 1(F)) indicate that the average size of the diagonal line of (quasi-)octahedral structures was ~100–200 nm. The elemental mapping analysis suggested the presence of Cu (Fig. 1(G)) and O (Fig. 1(H)) components in the suspended (quasi-)octahedral structures. Interestingly, we
found that the successful synthesis of suspended architecture on CNT networks through pulse electrodeposition probably relies on the electrical conductivity of the Si-pillar substrate. When we used highly-doped Si-pillar samples, a large amount of oxides was formed on the top of the Si pillar (Fig. 1(I)), and only a trace amount of suspended architectures was synthesized on the CNT networks.

To identify the microstructure of suspended (quasi-)octahedron structures, X-ray diffraction (XRD) measurements were carried out for all samples. As shown in Fig. 2(A), diffraction peaks of the Cu–CNT–SiP sample (blue line) at $2\theta = 36.8, 42.1,$ and 61.2 were not observed for SiP (black line) or CNT–SiP (red line) samples. These diffraction peaks can be indexed to face centered cubic phase Cu$_2$O (JCPDS 77-0199), which confirmed that the suspended (quasi-)octahedron structures mainly composed of cuprous oxides. Furthermore, additional diffraction peaks were observed at $2\theta = 32.4$ and 38.6, which probably belong to either CuO or Cu(OH)$_2$.

It has been reported that Cu$_2$O (rather than CuO) can be synthesized under our employed conditions. Nevertheless, Cu(OH)$_2$ is normally synthesized as a side product when changing the electrodeposition potential. Therefore, further confirmation of the composition was conducted using X-ray photoelectron spectroscopy (XPS). As shown in Fig. 2(B), a sharp and symmetric XPS peak, which corresponded to the CuI 2p$_{3/2}$ of Cu$_2$O, was observed at 932.8 eV. A shoulder peak at 934.9 eV corresponding to CuII 2p$_{3/2}$ of Cu(OH)$_2$ together with strong CuII satellite peaks were also clearly observed, indicating that additional XRD peaks actually came from Cu(OH)$_2$ instead of CuO because the CuII 2p$_{3/2}$ peak of CuO is normally located at 933.4 eV. To confirm the stability of Cu–CNT–SiP, we placed our samples in air for 1 month without any treatment and carried out XPS measurements. As shown in Fig. S2, no significant difference was found when comparing XPS data with those measured for as-prepared samples. These results revealed that our samples have good stability in air, and that no CuO was formed either during the electrodeposition process or upon exposure to air.

Furthermore, these 3D hierarchical networks were investigated using Raman spectroscopy to understand the formation of CNTs around the patterned Si pillars and the formation of suspended metal oxide architectures on CNTs networks. As shown in Fig. 3(A), the Raman spectra of CNT–SiP showed two unique Raman bands at ~ 1350 and 1590 cm$^{-1}$, which were in good agreement with the well-known D and G bands of typical CNTs, respectively. These results indicate that the initial nano-networks were constructed of CNTs bridging between Si pillars. After the electrochemical synthesis of the suspended oxide architecture, both the D and G bands were significantly...
formed at
sented a gradual and steady decrease in the absorption peak
UV-vis spectra of (a) CNT
absorption spectra were measured for both CNT
samples were kept in the MB solution for 1 h in the dark to
visible light illumination for 2 h. Before light illumination,
by putting our sample in MB dye solution (10 ppm) under
ESI.
provided a suspended oxide architecture instead of fully coated
oxide-coated CNT networks were synthesized through an elec-
tectures (Fig. 3(B)).
shown that Cu2O has six zone-center optical phonon modes.
Unfortunately, the Raman-active mode F2g at 520 cm
weak in our case. However, the characteristic optical phonon
modes for CuO were not observed in our samples.
results, which are in accordance with XRD and XPS data, further
confirmed that Cu2O was the dominant component in the
suspended metal oxide architecture. Subsequently, UV-vis
absorption spectra were measured for both CNT–SiP and Cu–
CNT–SiP samples. These results clearly showed that the visible
light absorption in the range of 450 nm to 680 nm was
enhanced due to the formation of the suspended oxide archi-
tectures (Fig. 3(B)).
The photocatalytic degradation of MB dye as a function of
time in the presence of CNT–SiP was determined by measuring
the UV-vis absorption spectra (Fig. S3 (A)†). For a better
comparison, MB decomposition was investigated with SiP
(Fig. S3(B)†), CNT–SiP (Fig. S3(C)†), and with a non-
suspended architecture (abbreviated as Cu–SiP, Fig. S3(D)†).
Details related to the preparation of Cu–SiP are shown in the
ESI.† The photocatalytic reaction of the MB dye was performed
by putting our sample in MB dye solution (10 ppm) under
visible light illumination for 2 h. Before light illumination,
samples were kept in the MB solution for 1 h in the dark to
reach adsorption equilibrium. We found that both SiP and
CNT–SiP had weak photocatalytic abilities towards MB decom-
position under visible light illumination. However, the latter
had better adsorption ability, probably due to the formation of
CNT networks. In contrast, both Cu–SiP and Cu–CNT–SiP pre-
sented a gradual and steady decrease in the absorption peak
formed at \(\lambda_{\text{max}} = 664 \) nm. The percentage of dye degradation, \(\eta \),
was calculated as follows:
\[
\eta = \frac{A_0 - A}{A_0} \times 100\%
\]
where \(A_0 \) is the initial absorbance of the dye, and \(A \) is the time-
dependent absorbance.

To visually compare the photocatalytic properties, the
percentage of dye residue \((1 - \eta) \) was plotted against the reaction
time (Fig. 4). The value of \((1 - \eta) \) after 1 h of adsorption
equilibrium in the dark was calculated for all samples. These
results showed that our suspended oxide architecture (Cu–
SiP) had a strong adsorption ability, in that 28% of MB dye
was removed within 1 h. After 2 h of photocatalytic reactions, no
significant MB degradation was observed for SiP and CNT–SiP,
and only 46% of the MB dye was totally removed by Cu–SiP.
However, Cu–CNT–SiP with suspended metal oxide architec-
tures was extremely effective for MB decomposition, removing
a total of 86% of the MB after 2 h of the photocatalytic reaction.
We provided the first demonstration of a facile approach to
synthesize a dual-suspended architecture. The CNT network
that bridges between patterned Si pillars was first synthesized
by LPTCVD. Nanometer-sized octahedron and quasi-
octahedron structures of cuprous oxide were synthesized on
CNT networks through pulse electrodeposition, as confirmed by
XRD, XPS, and Raman spectroscopy. The as-synthesized
samples, Cu–CNT–SiP, showed excellent photocatalytic abili-
ties towards MB decomposition under visible light illumina-
tion, and 86% of MB dye was removed within 2 h. To the best of
our knowledge, the controlled synthesis of suspended archi-
tectures on suspended substrates (here, CNT networks) by the
electrodeposition process has seldom been documented. Our
findings offered a facile and rational method for the designed
synthesis of dual-suspended architectures. However, we believe
that an investigation of the associated growth mechanisms can
facilitate a deep understanding of designed materials synthesis,
which will be a focus of the follow-up experiments.

Acknowledgements
The authors thank the National Research Foundation of Korea and
Ministry of Science, ICT and Future Planning for financial support
(2012M3A7B4035286, 2012R1A6A1029029, 2015R1A5A1037548,
2016K1A4A3914691 and IITP2016R0992161021). Yu Sun and Rui
Chen contributed equally to this work.
References