Cobalt co-catalysis for cross-electrophile coupling: diarylmethanes from benzyl mesylates and aryl halides†

Laura K. G. Ackerman,† Lukiana L. Anka-Lufford,† Marina Naodovic† and Daniel J. Weix*

The nickel-catalyzed cross-coupling of aryl halides with alkyl radicals derived from alkyl halides has recently been extended to couplings with carbon radicals generated by a co-catalyst. In this study, a new co-catalyst, cobalt phthalocyanine (Co(Pc)), is introduced and demonstrated to be effective for coupling substrates not prone to homolysis. This is because Co(Pc) reacts with electrophiles by an $S_{N}2$ mechanism instead of by the electron-transfer or halogen abstraction mechanisms previously explored. Studies demonstrating the orthogonal reactivity of (bpy)Ni and Co(Pc), applying this selectivity to the coupling of benzyl mesylates with aryl halides, and the adaptation of these conditions to the less reactive benzyl phosphate ester and an enantioconvergent reaction are presented.

Introduction

Cross-coupling relies upon the selective, ordered activation of two different substrates. For the coupling of nucleophiles with electrophiles, a single catalyst reacts with the electrophile by oxidative addition and the nucleophile by transmetalation, resulting in high cross-selectivities. Cross-electrophile coupling, the union of two different electrophiles, achieves selectivity by different mechanisms. Specifically, we have recently shown that in nickel-catalyzed reactions electrophiles can be differentiated by heterolysis and homolysis (Fig. 1, entry 1). Selectivity arises because (L)Ni reacts with aryl halides faster than alkyl halides, but (L)Ni forms alkyl radicals faster than aryl radicals.

The key to successful cross-electrophile coupling is selective radical generation from $R-Y$ (Fig. 1). In order to expand the types of substrates that can be coupled with aryl halides by this electrophile + radical mechanism, alternative methods of generating radicals must be developed. A key advance was that radical generation and coupling can be accomplished by two different catalysts (Fig. 1). Our group and the groups of Sanford, Molander, and MacMillan and Doyle have independently shown that a variety of co-catalysts can allow coupling of otherwise unreactive substrates under mild conditions (Fig. 1, entries 2–4).

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>R-Y</th>
<th>Co-catalyst</th>
<th>R+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SET halogen abstraction</td>
<td>Alkyl-X</td>
<td>[Ni]</td>
<td>Alkyl*</td>
</tr>
<tr>
<td>2 SET reductive ring opening</td>
<td>R'</td>
<td>$[\text{cp}_{2}\text{Ti}(\text{Cl})]$</td>
<td>$\text{Ti}^{[\text{V}]}$</td>
</tr>
<tr>
<td>3 photoredox SET oxidation</td>
<td>$\text{Ar}-\text{N}_{2}^{*}$</td>
<td>Ru(bpy)${3}$Cl${2}$</td>
<td>hv, +e$^{-}$</td>
</tr>
<tr>
<td>4 photoredox SET reduction</td>
<td>Ar^{*}</td>
<td>Ir(ppy)${2}$PF${6}$</td>
<td>hv, -e$^{-}$</td>
</tr>
<tr>
<td>5 SN$_{2}$ followed by homolysis</td>
<td>Bn^{*}</td>
<td>$\text{Co}^{[\text{II}]}$</td>
<td>hv, -e$^{-}$</td>
</tr>
</tbody>
</table>

All of the methods reported to date convert the substrate into a radical by single-electron oxidation or reduction (Fig. 1). As such, substrates must be easily oxidized or reduced. The development of co-catalysts that form radicals by different mechanisms

Fig. 1 Comparison of radical co-generation methods in cross-coupling. An electrophile ($Ar-X$) reacts to form an arylimetal intermediate and the other substrate ($R-Y$) reacts to form a radical (R^{*}).
would enable further expansion of substrate scope in this arylation strategy.

We report here that cobalt phthalocyanine (Co(Pc)) is an excellent, non-photochemical co-catalyst for radical generation that is compatible with nickel catalysis (Fig. 1, entry 5). Co(Pc) differs from previously described co-catalysts because it generates radicals after 2-electron nucleophilic substitution rather than single-electron transfer. This gives Co(Pc) different selectivity than previous approaches. For example, alkylsulfonate and alkylphosphate esters are unreactive towards single-electron transfer due to the strength of the C–O bond, but react rapidly by nucleophilic substitution.

Results and discussion

To demonstrate the potential of Co(Pc), we applied this co-catalyst to the synthesis of diarylmethanes from two abundant electrophiles, a benzyl alcohol derivative and an aryl halide. Although a variety of approaches to diarylmethanes have been developed, their prominence in medicinal chemistry has justified continued attention. The majority of recent approaches involve the cross-coupling of benzylmetal reagents or arylmetal reagents, but the need to pre-form each organometallic reagent can be limiting. A major advance was the development of methods where organozinc reagents were generated and coupled concurrently, but 2–4 equiv. of the benzyl halide was still required for high yields and no examples with more abundant benzyl alcohol derivatives were reported. Gosmini reported one example of the coupling of benzyl chloride with ethyl 4-bromobenzoate under conditions that might not involve an organozinc intermediate, but the scope of this method has not been explored. Finally, Reisman reported the coupling of secondary benzyllic chlorides with vinyl bromides, but the use of aryl halides or benzyl alcohols was not reported. Compared to these known methods, our new approach avoids pre-formed nucleophiles, starts from benzyl alcohols instead of the less abundant benzyl halides, and does not use a large excess of one coupling partner.

The application of our reported conditions to the coupling of aryl halides with benzyl bromide resulted primarily in the formation of dibenzyl (Scheme 1A). This is due to the fact that benzyl bromide reacts with (L)Ni faster than aryl halides (Scheme 1B). For example, benzyl bromide is converted to dibenzyl and toluene in only 60 min (ESI Table S1†).

In order to restore selectivity, we sought to take advantage of the low reactivity of bipyridine-ligated nickel catalysts with alkyl sulfonate esters in order to prevent formation of benzylnicke and favor formation of arylnickel (Scheme 1C). Benzyl mesylates can be conveniently generated in situ from abundant benzyl alcohols. Although this approach prevented dibenzyl formation (Table S1†), it did not improve the yield of diarylmethane because nickel is slow to form a benzyl radical from a benzyl mesylate (Table 1, entry 1). The addition of Co(Pc) as a co-catalyst could generate the missing benzyl radical (Scheme 1C), separating the oxidative addition and radical generation steps.

Significantly, this optimized nickel and cobalt system allows for the coupling of benzyl mesylates with aryl bromides, which occurs in low yield in the absence of Co(Pc) (Table 1, entries 1–3). Furthermore, it appears that both (dtbbpy)NiBr2 and Co(Pc) are required for high selectivity as neither catalyst is effective without a ligand (entries 4 and 7). An alternative co-catalyst, sodium iodide, was not as effective as Co(Pc) (entry 5 and Table S1†). The different products formed arise from different mechanisms of co-catalysis: Co(Pc) selectively forms benzyl radicals from BnOMs while NaI converts BnOMs to BnI which reacts similarly to benzyl bromide (Scheme 1B).

For convenience, the aryl halide, ligand, Co(Pc), and zinc could be added with the alcohol, Ms2O, and EtN(i-Pr)2 or after mesylate formation was complete with little difference in yield. However, if nickel was added at the beginning, rapid reduction or dimerization of the starting materials resulted.

The nickel and cobalt co-catalytic strategy of synthesizing diarylmethanes was also successful when aryl iodides were employed as coupling partners. When benzyl mesylate was reacted with iodobenzene under the optimized reaction conditions, the diphenylmethane product was formed in good yield. Although product was formed in the absence of Co(Pc), the co-catalytic method improved yield and selectivity (Table 1, entries 9–12). Added NaI depressed the yield only slightly (entry 13 vs. entry 9), suggesting that PPh3 competes with in situ formed BnI.
The reactivity and selectivity of the reaction can also be rationally optimized. For example, the coupling of benzyl diethyl phosphate ester was coupled without chemoselectivity problems, demonstrating complementarity with existing cross-coupling methods. The coupling of arylobromides and aryliodides with benzyl mesylates provided comparable yields. In examples where the selectivity over dibenzyl was high but the yield was low, hydrodehalogenation of the arene was responsible for diminished yields. The arylobromide conditions could be applied without further optimization to a vinyl bromide with reasonable success. Both electron-rich and electron-poor benzyl alcohols couple effectively and steric hindrance on the benzyl alcohol did not affect that an enantioconvergent coupling of racemic secondary benzylic electrophile with an aryl bromide could be achieved. Notably, we observe no hydrodehalogenation under these conditions, perhaps because there is no acid (EtN(i-Pr)2) that could promote hydrodehalogenation. We were able to apply this approach to the synthesis of beclobrate (3o), a diarylmethane compound that can be used to alter lipid levels.

The reaction and selectivity of the reaction can also be optimized. For example, the coupling of benzyl diethyl phosphate with benzyl mesylate provided comparable yields. In examples where the selectivity over dibenzyl was high but the yield was low, hydrodehalogenation of the arene was responsible for diminished yield. The arylobromide conditions could be applied without further optimization to a vinyl bromide with reasonable success. Both electron-rich and electron-poor benzyl alcohols couple effectively and steric hindrance on the benzyl alcohol did not affect that an enantioconvergent coupling of racemic secondary benzylic electrophile with an aryl bromide could be achieved. Notably, we observe no hydrodehalogenation under these conditions, perhaps because there is no acid (EtN(i-Pr)2) that could promote hydrodehalogenation. We were able to apply this approach to the synthesis of beclobrate (3o), a diarylmethane compound that can be used to alter lipid levels.

The likely intermediacy of a benzyl radical suggested to us that an enantioconvergent coupling of racemic secondary benzylic electrophile with an aryl bromide could be achieved. Although yields were low with secondary benzylic alcohol derivatives, α-chloroethylbenzene (7) coupled efficiently under slightly modified standard conditions to form diaryl-ethane 8 in 41% isolated yield and 43% ee (Scheme 3). This yield and enantioselectivity compares favorably to the results of Molander in the coupling of a racemic secondary benzylboron reagent with an aryl halide using the same chiral.

Table 1: Cross-electrophile coupling of Bn-OH with Ar→X

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Yield 3 (A%)</th>
<th>3:4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Br [Ni] only</td>
<td>3</td>
<td>1:1</td>
</tr>
<tr>
<td>2</td>
<td>Co(Pc)</td>
<td>0</td>
<td>ND</td>
</tr>
<tr>
<td>3</td>
<td>Br [Ni], Co(Pc)</td>
<td>73</td>
<td>1:1</td>
</tr>
<tr>
<td>4</td>
<td>Br [Ni], CoCl2</td>
<td>6</td>
<td>4:1</td>
</tr>
<tr>
<td>5</td>
<td>Br [Ni], NaI (25 mol%)</td>
<td>25</td>
<td>1:1</td>
</tr>
<tr>
<td>6</td>
<td>Br [Ni], Co(Pc), Mn instead of Zn</td>
<td>64</td>
<td>4:1</td>
</tr>
<tr>
<td>7</td>
<td>Br NiBr2·3H2O, Co(Pc)</td>
<td>1</td>
<td>1:6</td>
</tr>
<tr>
<td>8</td>
<td>Br No [Ni] and no Co(Pc)</td>
<td>0</td>
<td>0:1</td>
</tr>
<tr>
<td>9</td>
<td>I [Ni] only</td>
<td>71</td>
<td>7:1</td>
</tr>
<tr>
<td>10</td>
<td>I Co(Pc) only</td>
<td>0</td>
<td>ND</td>
</tr>
<tr>
<td>11</td>
<td>I [Ni], Co(Pc)</td>
<td>83</td>
<td>1:1</td>
</tr>
<tr>
<td>12</td>
<td>I [Ni], Co(Pc)</td>
<td>83</td>
<td>1:1</td>
</tr>
<tr>
<td>13</td>
<td>I [Ni], NaI (25 mol%)</td>
<td>64</td>
<td>8:1</td>
</tr>
<tr>
<td>14</td>
<td>I [Ni], Co(Pc), Mn instead of Zn</td>
<td>42</td>
<td>1.4:1</td>
</tr>
</tbody>
</table>

Reactions run at 0.25 M in DMA. BnOMs was formed in situ from BnOH, Ms2O (1.44 equiv.), and EtN(i-Pr)2 (1.6 equiv.). See ESI.

Nickel and cobalt co-catalyzed arylation of benzyl mesylates. Reactions performed as in Table 2, footnote a with 7 mol% NiBr2·3H2O, 5 mol% dtbbpy, and 1 mol% Co(Pc). Yield is isolated yield of purified product. See ESI+ for details on reaction selectivity. ND not detected. a No Co(Pc) was added to this reaction. b 3 mol% Co(Pc) was added to this reaction. c Reaction was run at 60 °C.
Acknowledgements

This work was supported by the NIH (R01 GM097243). LKGA is supported by an NSF Graduate Fellowship (NSF DGE-1419118). DJW is an Alfred P. Sloan Research Fellow. We thank Daniel A. Everson and Maxwell B. Hecht (Univ. of Rochester) for initial experiments with benzylic halides and mesylates; Sylvia Chen (Univ. of Rochester) for key experimental support and for assisting in the analysis of results; and Zulema Melchor (Univ. of Rochester) for experimental assistance.

Notes and references

4 For the reaction of an arylnickel(II) with an alkyl radical to form cross-coupled product, see: J. Breitenfeld, J. Ruiz, M. D. Wodrich and X. Hu, J. Am. Chem. Soc., 2013, 135, 12004.

8 For the use of Co(Pc) to activate alkyl halides for Cr-mediated coupling with aldehydes, see ref 9 and f.

11 A SciFinder Scholar database search for ArCH2Ar (https://scifinder.cas.org, June 2014) noted 567,220 diarylmethanes that had reported biological studies and 324,596 patents. Activities included antitumor, CNS, cardiovascular, anti-infective, anti-inflammatory, antidabetic, and antiobesity activity.

14 Commercial availability: 6,152 ArCH$_2$OH vs. 2,357 ArCH$_2$NH$_2$ vs. 605 ArCH$_2$Cl vs. 948 ArCH$_2$Br; data from eMolecules database (eMolecules, Inc.), accessed via REAXYS (Elsevier, Inc.) on April 21, 2014.

17 Co(Pc) reacted with benzyl mesylate to form benzyl radicals, quantitated as toluene (5%, 4%) and dibenzyl (42%). See Table 81 in the ESL.

18 Conditions: 1:1 PhI: BnBr, 7 mol% NiBr$_2$·3H$_2$O, 5 mol% dbbpy, and 2 equiv. Zn dust in DMA (0.25 M) at 60 °C for 10 min. BnBr is consumed, most of the iodobenzene remains.

19 Ligand-free nickel does not provide high yields (Table 2, entry 7) and excess nickel does not negatively impact reactions."

20 See ESI,† Scheme S1 and Chart S1–S10 for further selectivity and optimization details.

22 We denote the same product made by a different set of substrates with a prime. For example, 3c and 3c’ are made from different benzyl alcohol derivatives.

24 See ref 13c and f for examples of coupling benzyl phosphate esters with arylmetal reagents.

25 The relative leaving group ability can be estimated from the pK$_a$ data available in the literature for MsOH (1.6 in DMSO) and (PhO)$_2$P(O)OH (3.9 in DMSO). See: (a) F. G. Bordwell and D. Algrimm, *J. Org. Chem.*, 1976, 41, 2507; (b) P. Christ, A. G. Lindsay, S. S. Vemic, J.-M. Neudörfl, A. Berkessel and A. C. O'Donoghue, *Chem.–Eur. J.*, 2011, 17, 8524.

26 For examples of stereoselective or stereospecific coupling of benzylic substrates, see ref 13j, k and m, and the references in the following endnote.

28 Diaryl ethane 8 has been previously synthesized by the enantiospecific coupling of secondary benzylsilicon and benzylboron reagents with aryl iodides or aryl triflates. Yields over the two steps were 41–51% with a 34%–83% ee. See: (a) Y. Hatanaka and T. Hiyama, *J. Am. Chem. Soc.*, 1990, 112, 7793; (b) D. Imao, B. Glasspoole, V. r. Laberge and C. Crudden, *J. Am. Chem. Soc.*, 2009, 131, 5024; (c) B. W. Glasspoole, M. S. Oderinde, B. D. Moore, A. Antoff-Finch and C. M. Crudden, *Synthesis*, 2013, 45, 1759.

29 Further study is needed to better understand reactions of secondary benzylic chlorides. For these electrophiles, a cocatalyst may not be required. In preliminary studies, reactions run without added Co(Pc) provided similar yields. In preliminary studies, reactions run without added Co(Pc) provided similar selectivity and optimization details.