Homoleptic aminophenolates of Zn, Mg and Ca. Synthesis, structure, DFT studies and polymerization activity in ROP of lactides†

Jakub Wojtaszak, Krzysztof Mierzwicki, Sławomir Szafter, Nurbej Gulia and Jolanta Ejfler*

The reaction of MgBu₂, ZnEt₂ or Ca(O’Pr)₂ with 2 eq. of three-coordinating N-[methyl(2-hydroxy-3,5-dimethylphenyl)-N-methyl-N-methyl-1,3-oxolaneamine (mpoa-H) or N-[methyl(2-hydroxy-3,5-di-tert-butylphenyl)-N-methyl-N-methyl-1,3-oxolaneamine (tbpoa-H)] gave neutral, monomeric [Mg(mpoa)₂], [Zn(mpoa)₂], [Zn(tbpoa)₂] and [Ca(tbpoa)₂] as white powders in 58–90% yields. The resulting aminophenolates were characterized in solution by NMR showing, in the case of [Zn(tbpoa)₂], interesting dynamics. [Zn(tbpoa)₂] and [Ca(tbpoa)₂] were characterized by X-ray crystallography to show the Zn atom to be pseudo-octahedrally coordinated and the Ca atom in six-coordination mode. The new homoleptic complexes were tested in the polymerization of lactide with an external alcohol to reveal stable behaviour (during the polymerization process) only in the case of [Zn(tbpoa)₂]. The high activity of the catalyst was correlated with a ligand flexibility that was further supported by theoretical studies.

Introduction

Over the past two decades biodegradable polymers have attracted increasing attention as the subject of fundamental research and as products of the chemical industry.¹ One of the most prominent examples of such molecules is polylactide (PLA), which is presently developed as a commodity polymer for packaging (bottles and thin films), fibres (tissue and clothes), as well as for biomedical applications as biorecessable sutures, screws, orthopedic implants, drug delivery agents or scaffolds for tissue engineering.² Due to its favorable material properties and the fact that it can be produced from inexpensive renewable sources, PLA is qualified to be a viable alternative to petrochemical-based plastics.³ Nevertheless, since it is practically unviable to completely remove catalyst residues from the polymer, which is important for biomedical applications and green packages, the most interesting remain environmentally friendly non-toxic catalysts.

Among the galore of tested catalysts, the so-called well-defined heteroleptic catalysts of L₄M-OR type possess a great advantage owing to their ability to facilitate ring-opening polymerization with control of both molecular weight and polymer microstructure. For a specific “single-site” L₄M-OR catalyst, the relative rate of ROP correlates well with an M-O bond polarity. For example, for a given ligand environment, the relative rate of ROP changes in the order Ca²⁺ > Mg²⁺ > Zn²⁺. An excellent study of a family of “single-site” diverdal metal initiators supported by β-diketiminate, trispyrazolylborate or amino/mino-phenolate⁶ ligands, which included derivatives based on Zn, Mg, Ca, and Sn, has been reported.⁷ Such initiators illustrate the anticipated trends in polymerization rates, correlating well with the size of an initiating group and the electronic properties of ancillary ligand substituents.⁸

For the above mentioned L₄M-OR initiators, it is important to modify a metal coordination sphere by an ancillary ligand with sufficient steric bulk to prevent bischelation, which process is considered to represent a deactivation pathway by the formation of inactive ML₂ compounds.⁹ Therefore, homoleptic metal complexes have not been qualified as potentially effective initiators for ROP of lactide. However, the efficacy of ligands stabilizing heteroleptic L₄M-OR (M = Ca, Mg, Zn)
complexes is arguable due to high lability of such species. This seems especially apparent for initiators derived in situ from organometallic LnM-R precursors. It also seems difficult to ensure the stability of such compounds towards an excess of external alcohol in the case of iROP (immortal ROP).

An increasing demand for highly active, non-toxic, colourless, inexpensive, and stable complexes which can be easily handled is forcing the development of an alternative to single-site initiators. Among those, very attractive are catalytic systems for the monomer activated pathway based on homoleptic complexes of ML2 type combined with an external alcohol.10 In this regard, the recent study on homoleptic magnesium and zinc catalyst supported by bulky N,O-donor ligands is very promising.11 As we have recently reported, the aminophenolate ligands are able to form homoleptic zinc and magnesium monomers, which combine great potential as active catalysts in the ROP of lactide with an acceptable stability.12 Additionally, our studies indicate the dynamic behavior of these coordinatively saturated complexes in solution, which can be crucial for both stability and catalytic activity in ML2/ROH systems.

A more in-depth mechanistic understanding of the activation process of aminophenolate complexes in lactide polymerization as well as the way in which the structural "perturbations" of the active centre and reaction conditions influence their catalytic activity constitutes the aim of the current research. Herein we have described the synthesis and characterization of magnesium, calcium, and zinc complexes supported by the aminophenolate ligands with hemilabile arms containing additional ether O-donor and their application as initiators for lactide polymerization. The study extensively correlates the experimental outcomes with DFT calculations to rationalize the results.

Experimental section

General materials, methods and procedures

All the reactions and operations were performed under an inert atmosphere of N2 using a glove-box (MBraun) or standard Schlenk techniques. Reagents were purified by standard methods: THF, distilled from Na/benzophenone; toluene, distilled from Na; CH2Cl2, distilled from P2O5; hexanes, distilled from Na; methanol, distilled from Mg; Cs2D6, distilled from CaH2. l-LA ([3S]-cis-3,6-dimethyl-1,4-dioxane-2,5-dione) (98%); Aldrich) was sublimed and recrystallized from toluene prior to use. Benzyl alcohol (Aldrich) was distilled prior to use. ZnEt2 (1.0 M solution in hexanes), MgBu2 (2.5 M solution in hexanes), Ca(O[P(OMe)3]2 (99.9+%), 2,4-dimethylphenol (98%), 2-methylaminomethyl-1,3-dioxolane in MeOH (100 mL) 10.46 mL (0.140 mol) of formaldehyde (37% solution in H2O) was added. The solution was stirred and heated under reflux for 10 h until a crude product precipitated as a white solid. It was collected by filtration, washed with cold methanol and dried in vacuo to give mpoa-H in 72% yield (12.5 g, 49.7 mmol). Anal. Calcd for C14H21NO3 (%, 251.32): H, 8.42 (8.56); N, 5.57 (5.65); ESI/MS: 252.2 [M + 1]+; 1H NMR (300 MHz, C6D6, 300 K): δ = 10.54 (s, 1H, OH), 6.87 (s, 1H, ArH), 6.54 (s, 1H, ArH), 4.82 (t, JHH = 4.1 Hz, 1H, OCHO), 3.48 (s, 2H, N–CH2–Ar), 3.50–3.22 (m, 4H, 2CH2–O), 2.51 (d, JHH = 4.1 Hz, 2H, N–CH2–CH), 2.45 (s, 3H, N–CH3), 2.19 (s, 3H, CH3), 2.06 (s, 3H, CH3); 13C NMR (75 MHz, C6D6, 300 K): δ = 16.2, 20.7 (2[C, CH2]), 42.3 (N–CH3), 59.5 (N–CH2–CH), 62.4 (N–CH2–Ar), 64.8 (2C, CH2–O), 102.9 (1C, OCHO), 121.5, 125.03, 127.1, 127.3, 131.2, 154.6 (6C, Ar).

[Mg(mpoa)2]. To a solution of mpoa-H (2.08 g, 8.28 mmol) in hexanes (50 mL) MgBu2 (1.66 mL, 4.15 mmol) was added dropwise at room temperature. The solution was stirred until a white solid precipitated. It was filtered off, washed with hexanes (20 mL) and dried in vacuo. Recrystallization from toluene at −15 °C gave [Mg(mpoa)2] in 90% yield (1.96 g, 3.73 mmol). Anal. Calcd for C28H40N2O6Mg (%): C, 59.42 (59.61), H 7.12 (7.08), N 4.95 (4.85)%; 1H NMR (300 MHz, C6D6, 300 K): δ = 7.42 (br s, 2H, ArH), 7.03 (br s, 2H, ArH), 5.69, 5.49 (2br s, 2H, OC(O)), 2.63 (d, JHH = 4.6 Hz, 2H, OCHO), 4.65 (2C, CH2–O), 6.87 (s, 2H, N–CH2–Ar), 3.40–3.28 (m, 4H, N–CH2–CH), 7.03 (br s, 2H, ArH); 13C NMR (75 MHz, C6D6, 300 K): δ = 49.7 (1C, OCHO), 20.9 (2C, CH2), 46.5 (2C, N–CH3), 59.6 (2C, N–CH2–CH), 62.5 (2C, N–CH2–Ar), 64.8 (2C, O–CH2), 65.1 (2C, O–CH3), 101.8, 102.9 (2C, OCHO), 119.6, 122.0, 126.7, 129.2, 131.9, 164.4 (12C, Ar).

[Zn(mpoa)2]. A solution of ZnEt2 (2.00 mL, 2.00 mmol), mpoa-H (1.01 g, 4.02 mmol), and hexanes (50 mL) were combined in a procedure analogous to that for [Mg(mpoa)2]. Recrystallization from toluene gave [Zn(mpoa)2] in 84% yield (1.68 mmol, 0.95 g). Anal. Calcd for C28H40N2O6Zn (%): C, 59.42 (59.61), H 7.12 (7.08), N 4.95 (4.85)%; 1H NMR (300 MHz, C6D6, 300 K): δ = 7.40 (s, 2H, ArH), 6.90 (s, 2H, ArH), 5.25 (t, JHH = 4.6 Hz, 2H, OCHO), 4.38 (br s, 4H, N–CH2–Ar), 3.60–3.20 (m, 8H, CH2–O), 2.63 (d, JHH = 4.6 Hz, 4H, N–CH2–CH), 2.58 (s, 6H, N–CH3), 2.45 (s, 12H, CH3), 2.30 (s, 12H, CH3); 13C NMR (125 MHz, C6D6, 300 K): δ = 16.2 (2C, CH2), 20.8 (2C, CH3), 43.7 (2C, N–CH3), 59.5 (2C, N–CH2), 64.8
A solution of ZnEt₂ (2.00 mL, 2.00 mmol), tbpoa·H²O (1.34 g, 4.00 mmol), and hexanes (50 mL) were combined in a procedure analogous to that for [Mg(mpooa)_2]₂. Recrystallization from CH₂Cl₂ at −15 °C gave [Zn(tbpoa)_2] in 67% yield (0.99 g, 1.35 mmol). Anal. Calcd (found) for C₄₀H₆₄N₂O₆Ca (%, 709.02): C 67.76 (67.91), H 9.10 (9.03), N 3.81 (3.51); ¹H NMR (300 MHz, C₆D₆, 300 K): δ = 7.56 (s, 2H, ArH), 6.92 (s, 2H, ArH), 5.22, 5.13 (2 br s, 2H, OCH₂), 4.53 (d, JHH = 11.2 Hz, 2H, N–CH₂–Ar), 4.23 (d, JHH = 11.2 Hz, 2H, N–CH₂–Ar), 3.41–3.09 (m, 8H, O–CH₂), 2.53–2.25 (m, 4H, N–CH₂–CH), 1.67 (s, 6H, N–CH₃), 1.60 (s, 18H, C(CH₃)₃), 1.44 (s, 18H, C(CH₃)₃); ¹³C NMR (75 MHz, C₆D₆, 300 K): δ = 30.2 (4C, C(CH₃)₃), 32.3 (4C, C(CH₃)₃), 34.4 (4C, C(CH₃)₃), 35.6 (4C, C(CH₃)₃), 42.7, 43.8 (2C, N–CH₃), 59.3 (2C, N–CH₂–CH), 64.9, 65.1 (2C, Ar–CH₂–N), 66.1 (2C, CH₂–O), 66.3 (2C, CH₂–O), 102.9 (2C, OCHO), 120.4, 123.2, 125.9, 136.1, 138.2, 146.2 (12C, Ar).

A solution of tbpoa·H (1.34 g, 4.00 mmol) in toluene (50 mL) Ca(O’Pr)₂ (0.316 g, 2.00 mmol) was added at room temperature. The solution was stirred and heated under reflux for 48 hours. After cooling it was concentrated to give [Ca(tbpoa)_2] in 58% yield (0.82 g, 1.16 mmol). Anal. Calcd (found) for C₄₀H₆₄N₂O₆Zn (%, 734.33): C 65.42 (64.96), H 8.78 (8.44), N 3.81 (3.51); ¹H NMR (300 MHz, C₆D₆, 300 K): δ = 31.0 (4C, C(CH₃)₃), 32.4 (4C, C(CH₃)₃), 35.1 (4C, C(CH₃)₃), 35.7 (4C, C(CH₃)₃), 42.7 (1C, N–CH₂–N), 43.9 (1C, N–CH₂–N), 62.8 (2C, N–CH₂–CH), 65.5 (2C, Ar–CH₂–N), 66.5 (4C, CH₂–O), 103.7 (2C, OCHO), 124.0, 125.5, 128.0, 135.4, 139.2, 165.0 (12C, Ar).

Representative procedure for solution polymerization

In a typical experiment, the monomer t-LA and a solution of a metal complex (M) in CH₂Cl₂ were placed in a Schlenk flask at a fixed molar ratio. Then, after 10 minutes an external alcohol in stoichiometric amount (M/ROH = 1/1) was added. The reaction was stirred at the desired temperature for a prescribed time. At certain time intervals, about 1 mL aliquots were removed, precipitated with hexanes, and dried in vacuo. A conversion was determined observing ¹H NMR resonances of the polymer and the monomer by dissolving the precipitates in C₆D₆. After the reaction was completed, an excess of hexanes was added to the reaction mixture. Filtration and vacuum drying yielded a white polymer.

Details of X-ray data collection and reduction

[Zn(mpooa)_2] and [Ca(tbpoa)_2] (separately) were dissolved in CH₂Cl₂ and placed in a freezer at −15 °C. After several days, colourless, good quality crystals had formed. X-ray diffraction data for [Zn(mpooa)_2]CH₂Cl₂ and [Ca(tbpoa)_2]C₆H₅CH₃ were collected using a KUMA KM4 CCD (ω scan technique) diffractometer equipped with an Oxford Cryosystem-Cryostream cooler. The space groups were determined from systematic absences and subsequent least-squares refinement. Lorentz and polarization corrections were applied. The structures were solved by direct methods and refined by full-matrix-least squares on F² using SHELXTL Package. Scattering factors were taken from the literature. Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atom positions were calculated and added to the structure factor calculations, but were not refined. All data (except structure factors) have been deposited with the Cambridge Crystallographic Data Centre or as supplementary publications CCDC-962646 and CCDC-962645. The solvated CH₂Cl₂ in [Zn(mpooa)_2]CH₂Cl₂ was distorted and it was refined with FVAR of 0.69.

Computational methods

Theoretical calculations of harmonic vibrational frequencies, chemical shifts and energies for calcium, magnesium and zinc complexes were performed using TURBOMOLE 6.3 and Gaussian 09. During optimizations and frequency calculations C₂ point group symmetry constraints (for Ca, Mg, and few Zn complexes), 4₈ grid (in TURBOMOLE notation), tight SCF convergence criteria, and density fitting approach (resolution-of-identity, RI) have been used. Geometries from crystal structure investigations were taken as a starting point for the full gas-phase optimization. Two terminal iBu groups were replaced by hydrogen atoms as shown in Fig. 1.

Since the X-ray data showed two slightly different isomers for the zinc complex, both structures were considered in subsequent studies. In the first stage, geometry optimization and vibrational analysis were performed at the TPSS-D3/def2-SVPD level with respective default auxiliary basis sets, where TPSS-D3 means the meta-GGA functional with Grimme’s D3 dispersion correction. Though for like-charged species (for example two ligands in considered [ML₂] complexes) the Coulombic repulsion is usually dominant, as was recently shown by Grimm et al., going from point charges model to real ions one should also take into account London dispersion attraction. In some cases the dispersion not only overcomes electrostatic repulsion but also the entropy penalty of complex

Fig. 1 Schematic structure (with numbering of selected atoms; H atoms omitted except for the CH protons of dioxolane rings) of [ML₂] complexes (M = Ca, Mg, Zn).
formation.22 Therefore the dispersion correction seems to be important not only for quantitative but even for correct qualitative description of such molecules. All the vibration frequencies in each studied complex were real. This proves that the obtained structures are true minima. Such calculated molecules were reoptimized at the TPSS-D3/def2-TZVPPD level20,23 (with respective auxiliary basis sets taken from TURBOMOLE library). This functional was chosen because – as we found – for the considered molecules it gives results which are quite close to MP2 ones. The NMR results suggested that for the zinc complex, depending on temperature, dioxolane arms can be bound or non-bound. Therefore we optimized these molecules with different dioxolane ring positions and found additional isomers.

Isotropic 1H chemical shifts were computed (with the Gaussian 09 package) as a difference between chemical shieldings of reference hydrogen atom in tetramethylsilane (TMS, optimized at the TPSS-D3/def2-TZVPPD level of theory) and proton chemical shieldings in considered complexes. All these values were obtained using the gauge independent atomic orbital (GIAO) method24 for the gas-phase geometries. We employed WP04 functional, proposed recently by Wiitala \textit{et al.}25 and 6-31G(d,p) basis set. ChemCraft package has been used to visualize some of the results.26

\section*{Results and discussion}

\subsection*{Synthesis and solid-state determination}

Monomeric, homoleptic magnesium, calcium or zinc alkoxides, like similar alkoxides of other metals, are rare. Their high tendency for bridging must be suppressed by the steric bulk of an alkoxo ligand and therefore proposed ligands contain obstructed ortho and para positions of the phenol moiety as well as a hemilabile amino-arm with a coordinating dioxolane ring.

Aminophenolates mpoa-H and N-[methyl[2-hydroxy-3,5-di-tert-butyl(phenyl)]-N-methyl-N-methyl-1,3-dioxoleneamine (tbpoa-H) were prepared according to modified Mannich condensation27 using respective disubstituted phenol, paraformaldehyde, and 2-methylaminomethyl-1,3-dioxolane as described in previous literature12 and in the Experimental section. Next, both ligands were used for complex syntheses. In the first thrust, a solution of mpoa-H was slowly treated with 2.5 M solution of MgBu\textsubscript{2} (0.5 eq.) in hexanes at room temperature to give a white solid of [Mg(mpoa)\textsubscript{2}] in 90% yield (after recrystallization from toluene) as shown in Scheme 1.

Analogous reactions of mpoa-H or tbpoa-H with ZnEt\textsubscript{2} (1 M solution in hexanes) or tbpoa-H with Ca(O\textit{t}Pr\textsubscript{2})\textsubscript{2} gave analytically pure [Zn(mpoa)\textsubscript{2}], [Zn(tbpoa)\textsubscript{2}], and [Ca(tbpoa)\textsubscript{2}] in 84–58% yield as white solids. Only in the case of [Ca(tbpoa)\textsubscript{2}] a longer reaction time and an elevated temperature were applied. Compounds with a tbpoa ligand are well soluble in toluene, CH\textsubscript{2}Cl\textsubscript{2}, or THF, while the solubility of aminophenolates with methyl substituents [Mg(mpoa)\textsubscript{2}] and [Zn(mpoa)\textsubscript{2}] appear much poorer in these solvents. All compounds are insoluble in aliphatic hydrocarbons.

The complexes were characterized by 1H and 13C NMR spectroscopy, which showed complicated dynamics in solution. Magnesium compound exhibited (both in 1H and 13C NMR spectra) multiple signals of the OCHO group of the dioxolane ring. In the proton spectrum there were two broad signals positioned at \(\delta\): 5.69 and 5.49 ppm. Also the 13C NMR spectrum showed two signals of OCHO carbon, which were located at \(\delta\): 101.8 and 102.9 ppm. Moreover, the signal of the neighbouring methylene N–CH\textsubscript{2}–CH protons appeared as a multiplet in the \(\delta\) range: 3.40–3.28 ppm. The results suggest the coordination of just one dioxolane arm to the metal center in [Mg(mpoa)\textsubscript{2}] or the so-called “gorilla” effect (quick coordination and decordination of both dioxolane rings interchangeably). Interestingly, in [Zn(mpoa)\textsubscript{2}] the 1H NMR spectrum showed just one well resolved triplet of the OCHO group at \(\delta\): 5.25 ppm and the neighbouring methylene N–CH\textsubscript{2}–CH signal appeared as a doublet at \(\delta\): 2.63 ppm. Also the 13C NMR spectrum of [Zn(mpoa)\textsubscript{2}] exhibited a single peak of the OCHO group at \(\delta\): 102.9 ppm. This might be an effect of a slightly higher ionic radius of Zn(\textit{II}) compared to Mg(\textit{II}), which enables a better coordination of both dioxolane rings.28 An exchange of the substituents in the phenolic part of the aminophenolate ligand for larger the \textit{Bu group resulted in a “tighter” arrangement around the metal center, which affected its coordination mode. In [Zn(tbpoa)\textsubscript{2}], once again the 1H and 13C NMR spectra showed multiple signals for the OCHO group. The proton spectrum showed two broadened signals at \(\delta\): 5.22 and 5.13 ppm and a multiplet of the adjacent methylene N–CH\textsubscript{2}–CH group.
in the δ range: 2.53–2.25 ppm. Interestingly the signal of the methylene N–CH2–Ar protons in [Zn(tbpoa)2] appeared as a pair of doublets, which might suggest that they became di-
sterotopic as shown in Fig. 2. The effect is similar to that observed for [Mg(mpoa)2] and suggests a similar “gorilla” mechanism.

The other explanation could be stereochemistry at the N centers (the possible isomers for [Zn(tbpoa)2] are SS, RR and R,S). This could be supported by the appearance of two signals of the methyl N
43.8 ppm. This observation indicates that decoordination of the dioxolane moiety causes stronger coordination of an N

Table 1 X-ray data for [Zn(tbpoa)2]·CH2Cl2 and [Ca(tbpoa)2]·C6H5CH3

<table>
<thead>
<tr>
<th>Molecular formula</th>
<th>[Zn(tbpoa)2]·CH2Cl2</th>
<th>[Ca(tbpoa)2]·C6H5CH3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>C41Cl2H66N2O6Zn</td>
<td>C47H72CaN2O6</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C2/c</td>
<td>P1</td>
</tr>
<tr>
<td>a [Å]</td>
<td>18.403(4)</td>
<td>10.293(3)</td>
</tr>
<tr>
<td>b [Å]</td>
<td>19.279(4)</td>
<td>15.167(4)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>23.718(3)</td>
<td>16.176(4)</td>
</tr>
<tr>
<td>α [°]</td>
<td>90</td>
<td>81.41(3)</td>
</tr>
<tr>
<td>β [°]</td>
<td>110.61(2)</td>
<td>74.00(3)</td>
</tr>
<tr>
<td>γ [°]</td>
<td>90</td>
<td>71.62(3)</td>
</tr>
<tr>
<td>V [Å³]</td>
<td>8540(3)</td>
<td>2298.2(11)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>d[</td>
<td>g cm⁻³</td>
<td></td>
</tr>
<tr>
<td>μ [mm⁻¹]</td>
<td>0.746</td>
<td>0.184</td>
</tr>
<tr>
<td>Crystal dimensions [mm]</td>
<td>0.33 × 0.20 × 0.03</td>
<td>0.24 × 0.18 × 0.15</td>
</tr>
<tr>
<td>Θ Range [°]</td>
<td>2.61 ≤ Θ ≤ 25.04</td>
<td>2.78 ≤ Θ ≤ 28.62</td>
</tr>
<tr>
<td>Range/indices (h,k,l)</td>
<td>−19,21; −22,22; −13,13; −20,20; −30,30 −21,21</td>
<td></td>
</tr>
<tr>
<td>No. of reflections</td>
<td>43 167</td>
<td>20 255</td>
</tr>
<tr>
<td>No. of unique data</td>
<td>7540</td>
<td>10 595</td>
</tr>
<tr>
<td>No. of observed data</td>
<td>4984</td>
<td>4007 [I > 2σ(I)]</td>
</tr>
<tr>
<td>No. refined parameters</td>
<td>489</td>
<td>508</td>
</tr>
<tr>
<td>Rint</td>
<td>0.0695</td>
<td>0.0688</td>
</tr>
<tr>
<td>R indices [I > 2σ(I)]</td>
<td>R1 = 0.0765</td>
<td>R1 = 0.0688</td>
</tr>
<tr>
<td></td>
<td>wR2 = 0.1994</td>
<td>wR2 = 0.1393</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.1143</td>
<td>R1 = 0.1862</td>
</tr>
<tr>
<td></td>
<td>wR2 = 0.2274</td>
<td>wR2 = 0.1799</td>
</tr>
<tr>
<td>Goodness of fit</td>
<td>1.048</td>
<td>0.900</td>
</tr>
<tr>
<td>Largest diff. peak hole</td>
<td>1.607, −0.716</td>
<td>0.812, −0.598</td>
</tr>
</tbody>
</table>

Fig. 2 The signals of methane OCHO (marked with b⁴, b⁶) and methylene N–CH2–Ar protons (marked with a⁵, a⁶) belonging to possible isomers of [Zn(tbpoa)2] at room temperature (in d6-benzene). The signal of methane OCHO proton of the internal standard (free tbpoa-H) was marked with b⁵.

Fig. 3 Variable temperature ¹H NMR spectra for [Zn(tbpoa)2]. The signal of methane OCHO proton of the internal standard (free tbpoa-H) was marked with b⁵.
Table 2 Selected bond distances (Å) and angles (°) for [Zn(tbpoa)$_2$]·CH$_2$Cl$_2$ and [Ca(tbpoa)$_2$]·C$_6$H$_5$CH$_3$

<table>
<thead>
<tr>
<th>Atoms</th>
<th>CH$_2$Cl$_2$, A</th>
<th>CH$_2$Cl$_2$, B</th>
<th>C$_6$H$_5$CH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M–N(1)</td>
<td>2.092(4)</td>
<td>2.106(4)</td>
<td>2.608(3)</td>
</tr>
<tr>
<td>M–N(2)a</td>
<td>2.092(4)</td>
<td>2.106(4)</td>
<td>2.606(3)</td>
</tr>
<tr>
<td>M–O(1)</td>
<td>1.923(4)</td>
<td>1.93(3)</td>
<td>2.189(3)</td>
</tr>
<tr>
<td>M–O(2)a</td>
<td>(3.007(4))b</td>
<td>(2.725(5))b</td>
<td>4.012(2)</td>
</tr>
<tr>
<td>M–O(4)a</td>
<td>1.923(4)</td>
<td>1.93(3)</td>
<td>2.210(2)</td>
</tr>
<tr>
<td>M–O(5)a</td>
<td>(3.007(4))b</td>
<td>(2.725(5))b</td>
<td>2.377(3)</td>
</tr>
</tbody>
</table>

a Atoms N(2), O(4), and O(5) are related to N(1), O(1), and (O2), respectively, by symmetry operation: 1 − x, y, 1.5 − z. b Values in parentheses are for the non-bonding interactions.

The zinc and calcium solvates [Zn(tbpoa)$_2$]·CH$_2$Cl$_2$ and [Ca(tbpoa)$_2$]·toluene crystallize in C2/c (monoclinic) and P1 (triclinic) space groups, respectively. No internal or external hydrogen bonds were observed for both structures. There are two independent molecules of [Zn(tbpoa)$_2$]·CH$_2$Cl$_2$ in the unit cell, each lying at the two fold axis. In both, zinc(II) centers possess analogous four coordinated arrangement, where each metal is surrounded by two pairs of N,O atoms from two aminophenolates.12,29

Nevertheless, a closer look at the positions of the cis-sited dioxaolane substituents shows that although the arms are dangling they remain in close proximity to the metal center to form a pseudooctahedral arrangement. Interestingly, the dioxaolane O atoms being closer to the metal atoms differ significantly in the M–O distance of 3.007(4) and 2.725(5) Å. The pseudooctahedral arrangement is further supported by the bond angles around the metal centers, as shown in Table 2. Also here the O–M–O angles formed by O atoms from dioxaolane rings are markedly different for the two independent molecules (68.3 vs. 80.6°). The observations – although made for a solid state – support the NMR data, which showed important dynamics of the ligands in [Zn(tbpoa)$_2$]. The Zn(1)–N(1) and Zn(2)–N(2) distances of 2.092(4) and 2.106(4) Å and Zn(1)–O(1) and Zn(2)–O(2) distances of 1.923(4) and 1.933(5) Å are similar to those found in Zn(tbpoa)$_2$ (L = N-[methyl(2-hydroxy-3,5-di-tert-butylphenyl)-N-methyl-N-cyclohexylamine]; Zn–O(1) = 1.909(2) and Zn–N(1) = 2.130(2) Å, [Zn(L)$_2$]·H$_2$O (L = 1-ethyl-4,7-bis(3-tert-butyl-5-methoxy-2-hydroxybenzyl)-1,4,7-triazacyclonane); Zn–O = 1.963(1) and 1.934(1) Å; Zn–N = 2.113(1) and 2.277(1) Å)27 and [ZnL$_2$] (L = N-(2-hydroxy-5-nitrobenzyl)-(R)-a-methylbenzylamine; Zn–O = 1.935(2) and 1.933(2) Å; Zn–N = 2.042(19) and 2.045(19) Å)29

Although the solid structure of [Ca(tbpoa)$_2$]·C$_6$H$_5$CH$_3$ is also a molecular monomer, it substantially differs from that of [Zn(tbpoa)$_2$]·CH$_2$Cl$_2$. As has already been revealed by the NMR data, both dioxaolane rings in [Ca(tbpoa)$_2$]·C$_6$H$_5$CH$_3$ are coordinated to the metal center and remain in trans arrangement. The Ca–O(2) and Ca–O(5) distances are 2.401(2) and 2.377(3) Å, respectively. The nitrogen atoms are cis one to the other and so are the phenoxy oxygens. The Ca–N(1) and Ca–N(2) distances are 2.608(3) and 2.666(3) Å and Ca–O(1) and
Zn, Ca) and [M(mpoa)2] (M = Mg, Zn) as initiators in lactide
[Ca(tbpoa)2] complex appeared to be no exception. Instead, the
feature of calcium complexes and the aminophenolate
compounds is formed. Ligand displacement is a prominent
nolate ligands very easily and an insoluble mixture of calcium
calcium complex in the presence of alcohols loses aminophe-
excluded them from further experiments. Moreover, the
solubility of [M(mpoa)2] and low activity of [Ca(tbpoa)2]
M conversion in 15 min and gave out polymers with moderate
(BzOH = benzyl alcohol) was added (1 eq.). It achieved high
polymerization. After running several trials of the polymeriz-
with M(II) ions, labile monomeric complexes whose dynamic
shown above, the aminophenolate ligands are able to form,
monomer pathway

\[\text{ROP of } \text{L-LA catalyzed by } \text{[Zn(tbpoa)2]} \]

<table>
<thead>
<tr>
<th>Entry</th>
<th>ROH</th>
<th>[I]/[L-LA]/ROH</th>
<th>Time [min]</th>
<th>(C^a) [%]</th>
<th>(M_n,\text{calc}^b) [g mol(^{-1})]</th>
<th>(M_n,\text{obs}^c) [g mol(^{-1})]</th>
<th>(M_w/M_n^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HC=CCOOH</td>
<td>1/5/1</td>
<td>2</td>
<td>98</td>
<td>762</td>
<td>908</td>
<td>1.081</td>
</tr>
<tr>
<td>2</td>
<td>HC=CCOOH</td>
<td>1/10/1</td>
<td>5</td>
<td>92</td>
<td>1382</td>
<td>1280</td>
<td>1.012</td>
</tr>
<tr>
<td>3</td>
<td>HC=CCOOH</td>
<td>1/20/1</td>
<td>15</td>
<td>99</td>
<td>2881</td>
<td>3333</td>
<td>1.083</td>
</tr>
<tr>
<td>4</td>
<td>HC=CCOOH</td>
<td>1/30/1</td>
<td>20</td>
<td>99</td>
<td>4337</td>
<td>4912</td>
<td>1.040</td>
</tr>
<tr>
<td>5</td>
<td>HC=CCOOH</td>
<td>1/50/1</td>
<td>30</td>
<td>98</td>
<td>7118</td>
<td>7612</td>
<td>1.081</td>
</tr>
<tr>
<td>6</td>
<td>C(\text{13})H(\text{27})O(_\text{H})</td>
<td>1/30/1</td>
<td>45</td>
<td>94</td>
<td>4335</td>
<td>4530</td>
<td>1.031</td>
</tr>
</tbody>
</table>

Reaction conditions: \(V_{\text{solvent}} = 25 \text{ mL}, \text{toluene}; \ T = 58 \degree \text{C} \). \(^a\) Obtained from \(^1\text{H} \text{NMR}. \(^b\) Calculated from \(M_n,\text{theo} = \frac{[\text{L-LA}]/[\text{ROH}]}{C^\%} \times 144.13 + M_{\text{ROH}} \) unless otherwise specified. \(^c\) Determined by GPC calibrated versus polystyrene standards and corrected by a factor of 0.58 according to literature recommendations.\(^d\) Obtained from GPC.

Ca–O(4) are 2.189(3) and 2.210(2) Å. The octahedron around the central atom is substantially distorted, which can be concluded from the bond angles in Table 2.

Lactide polymerization
As has already been mentioned, a catalytic system based on a
homoleptic complex ML\(_2\)/ROH combination for “the activated
monomer pathway” has been proposed for ROP of cyclic
esters, as an alternative to “single-site” \(\text{L}_\text{n}\text{M-OR} \) catalysts. As
shown above, the aminophenolate ligands are able to form,
with M(II) ions, labile monomeric complexes whose dynamic
behaviour in solution can be crucial for catalytic activity in
ML\(_2\)/ROH systems. The focus of our attention has now been
shifted towards verification of the reactivity of [M(tbpoa)\(_2\)] (M =
Zn, Ca) and [M(mpoa)\(_2\)] (M = Mg, Zn) as initiators in lactide
polymerization. After running several trials of the polymerization
in THF, \(\text{CH}_\text{2}\text{Cl}_\text{2} \), and toluene at 298–323 K, the latter
became the best choice for these systems. Nevertheless, poor
solubility of [M(mpoa)\(_2\)] and low activity of [Ca(tbpoa)\(_2\)]
excluded them from further experiments. Moreover, the
calcium complex in the presence of alcohols loses aminophenolate
ligands very easily and an insoluble mixture of calcium
compounds is formed. Ligand displacement is a prominent
feature of calcium complexes and the aminophenolate
[Ca(tbpoa)\(_2\)] complex appeared to be no exception. Instead, the
most labile (according to the NMR data) compound
[Zn(tbpoa)\(_2\)] appeared as efficient initiators for the polymerization
of \(\text{L-LA} \).

Regardless of its low solubility, the magnesium complex
[Mg(mpoa)\(_2\)] was reacted with 50 equiv. of \(\text{L-LA} \) and BzOH
(BzOH = benzyl alcohol) was added (1 eq.). It achieved high
conversion in 15 min and gave out polymers with moderate
\(M_w = 8700 \) and PDI = 1.1. The polymerization process is living
and polymer chains are terminated by aminophenolate and
hydroxyl groups. The polymerization results and NMR study
are consistent with the DFT study (see below), indicating a
possibility of equilibrium of five and six coordinated
magnesium species. Usually an octahedral environment of mag-
nesium atoms is preferred and therefore a coordination gap
(after decoordination of a hemilabile arm) is immediately sub-
stituted by lactide, which is the first step in the polymerization
process. These structural perturbations caused rendering of one
aminophenolate ligand as a polymer end-group.

\[\text{ROP of } \text{L-LA catalyzed by } \text{[Zn(tbpoa)2]} \]

Fig. 6 Polymerization of \(\text{L-LA} \) catalyzed by \[\text{[Zn(tbpoa)2]}\] in toluene at
58 °C. The relationship between \(M_n \) (blue line) and PDI (red line) vs. the
initial molar ratio \(\text{[L-LA]}/[\text{ROH}] \).

Experimental results showed [Zn(tbpoa)\(_2\)] to be an efficient
and the most interesting initiators for the polymerization of
\(\text{L-LA} \). Representative results are collected in Table 3. The
choice of the propargyl alcohol was determined by the possi-
bility of conducting synthesis of end-functionalized oligomers,
which could later be applied as building blocks in molecular
engineering.

Based on the narrow PDI values (1.012–1.083) complex
[Zn(tbpoa)\(_2\)] behaves in a controlled manner. The linear
relationship between the \(M_n \) and the conversion exhibited by
[Zn(tbpoa)\(_2\)] implies the living character of the polymerization
process as shown in Fig. 6.

The end-group analysis is demonstrated by the \(^1\text{H} \text{NMR}

\[\text{the spectrum of the PLA produced by initiators } \text{[Zn(tbpoa)2]}/\text{ROH} \text{ (ROH = propargyl alcohol, octadecanol) indicated that polymer}
\text{chains are terminated by hydroxyl and appropriate ester}
\text{groups as demonstrated in Fig. 7.}

The polymerization conditions essentially determine the
activity of [Zn(tbpoa)\(_2\)], which is in agreement with theoretical
calculations. At room temperature either the closed structure
or the structure with one pendant dioxolane arm is dominant.
The latter form after the coordination of lactide molecules
shows low polymerization activity. Instead, the change of con-
ditions to a fully open structure (both dioxolane arms
pendant) and the addition of lactide creates an active complex.
As proven by theoretical calculations, there is no big difference
which – of the many possible open conformations – is formed
after the dioxolane arms decoordinate, since they all easily transform into each other. The most important thing is to keep those reaction conditions that retain open forms. The shutter of hemilabile arms at room temperature gave stable and easy to store slipping catalysts.

DFT study

In order to gain a more detailed picture of the processes taking place during the polymerization, theoretical calculations have been performed as described in the Experimental section. First the interaction energies have been calculated:

\[\Delta E(ML-L) = -(E(ML) - E(M^+) - E(L^-)) \]

\[\Delta E(M-L) = -(E(ML^+) - E(M^2+) - E(L^-)) \]

To calculate these values, in the first place we performed a gas-phase geometrical optimization. The optimized structures are shown in Fig. 8 and the major conformers are marked 1 and 8'.

Although 8' has a structure which is close to the crystallographic one (or rather its mirror image), we found two similar lower energy conformers: 8 and 8'', which differ mainly in dioxolane rings arrangement (pseudo-rotation of this ring; see ESI† for more detailed explanation).

Unlike Ca and Mg, which prefer octahedral arrangement, zinc is usually tetrahedrally coordinated. The analysis of the optimized geometrical parameters (Table 1S in ESI†) of calcium and magnesium complexes show that Ca and Mg cations are 6-coordinated and they are surrounded by six (four O and two N) nearest neighbors in a distorted octahedral arrangement. On the other hand, the optimized Zn initiator appeared to have octahedral or rather pseudo-octahedral coordination, but the analysis of M–N and M–O distances (see Table 4 and 15†), as well as ionic radii (0.74 Å, 4-coordinated ion; 0.88 Å, 6-coordinated ion) led to the conclusion that its structure more closely resembles a distorted tetrahedron. Calculated and experimentally measured M–N and M–O (phenyl oxygen) distances are the smallest in the Zn complex and the largest in the Ca one. These results are consistent with ionic radii of Ca (1.14 Å, 6-coordinated ion), Mg (0.86 Å, 6-coordinated ion), and Zn (0.74 Å, 4-coordinated ion) cations.

Table 4 presents also ML-L and M-L interaction energies for the ML₂ complexes ad ML⁺ ions (M = Ca, Mg, Zn). The lowest \(\Delta E(ML-L) \) and \(\Delta E(M-L) \) values have been found for calcium. In the case of magnesium, \(\Delta E(MgL-L) \) is over 20 kcal mol\(^{-1}\) larger than for the Ca complex. The \(\Delta E(MgL-L) \) value is much greater than that for \(\Delta E(Ca-L) \) and reaches 62 kcal mol\(^{-1}\). But the difference between \(\Delta E(MgL-L) \) and \(\Delta E(ZnL-L) \) seems to be too small to explain why in contrast to the zinc complex the magnesium initiator loses one ligand during the polymerization process. There may be different reasons for this: (i) in the Mg-complex both ligands have conformations that are significantly distinct from those for Zn initiator (Fig. S1†), which may facilitate the incorporation of one ligand into the growing polymer and (ii) one should remember that structures of these

![Fig. 7](image1.png)
Fig. 7
\(^{1}H\) NMR spectra of poly(L-lactide) with acetylene end-group.

![Fig. 8](image2.png)
Fig. 8
Optimized structures of [Zn(tbpoa)₂] complexes (H atoms omitted except for the CH protons of dioxolane rings) and their relative energies (in kcal mol\(^{-1}\)) calculated at the TPSS-D3/TZVPPD level of theory.
Interaction energies (ΔE), partial NPA charges on metal atoms (q), and metal cation natural electron configurations for the ML$_2$ complexes (M = Ca, Mg, Zn) calculated at the MP2(SCS)/TZVPPD//TPSS-D3/TZVPPD (ΔE) and B3LYP/TZVPPD//TPSS-D3/TZVPPD (q) levels of theory.

Table 4 Interaction energies (ΔE), partial NPA charges on metal atoms (q), and metal cation natural electron configurations for the ML$_2$ complexes (M = Ca, Mg, Zn) calculated at the MP2(SCS)/TZVPPD//TPSS-D3/TZVPPD (ΔE) and B3LYP/TZVPPD//TPSS-D3/TZVPPD (q) levels of theory.

<table>
<thead>
<tr>
<th>Molecule (for M) [e]</th>
<th>ML$_2$</th>
<th>ML$^+$</th>
<th>ML$^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ca(tbpoa)$_2$]</td>
<td>192 (24, 22, 147a)</td>
<td>1.80</td>
<td>-0.92 (-0.78^b)</td>
</tr>
<tr>
<td>[Mg(tbpoa)$_2$]</td>
<td>217 (20, 31, 167)</td>
<td>1.83</td>
<td>-0.97 (-0.72^b)</td>
</tr>
<tr>
<td>[Zn(tbpoa)$_2$]</td>
<td>213 (14, 36, 163)</td>
<td>1.76</td>
<td>-0.98 (-0.80^b)</td>
</tr>
<tr>
<td>[Zn(tbpoa)$_3$]</td>
<td>216 (3, 38, 175)</td>
<td>1.77</td>
<td>-0.97 (-0.79^b)</td>
</tr>
</tbody>
</table>

aContributions of dioxolane-, amine-, and phenyl-fragments to the total interaction energies. bFree anion L (in complex geometry) partial NPA charges.
In all considered complexes the $\Delta E(\text{ML}-\text{L})$ is much smaller than $\Delta E(\text{M}-\text{L})$. It is worth noting that $\Delta E(\text{M}-\text{L}) \sim \Delta E(\text{ML}-\text{L})$ difference is the smallest for CaL$_2$ (~160 kcal mol$^{-1}$), medium for MgL$_2$ (~201 kcal mol$^{-1}$), and the largest for ZnL$_2$ molecules (~227–246 kcal mol$^{-1}$). Because magnesium complex loses only one ligand during polymerization, a calculated larger $\Delta E(\text{M}-\text{L}) \sim \Delta E(\text{ML}-\text{L})$ value for Mg in comparison to Ca is consistent with experimental observations.

Table 4 lists also partial NPA charges and metal cation natural electron configurations for the ML$_2$ complexes and ML$^+$ ions. It is evident from this table that the most (negative) charge is transferred to Zn and most of the additional electron density goes into the 3s and 4s orbitals for magnesium and zinc, respectively. For the calcium complex a significant portion of the electron density transferred to the metal ion resides in the 4s and 3d orbitals (Zn loses some electron density in this orbital). In all cases, the presence of the metal cation affects the electron density distribution of neighboring N and O atoms. As one can guess, the smallest change of this distribution is observed for dioxolane oxygen atoms coordinated to the zinc.

For the Zn-complex, analysis of the experimental 1H NMR spectrum indicates two signals of the methine protons of dioxolane rings, which appear at 5.22 and 5.13 ppm. But from theoretical calculations we obtained two much more distant values: 5.26 ppm (conformer 1) and 5.76 ppm (conformer 8). This may mean that instead of form 8 (or rather, as it was mentioned before, its mirror image form) some other conformer(s) is(are) present in solution. As mentioned before the solution NMR studies indicate that bound and non-bound dioxolane rings can readily exchange. Rotation of these groups may lead to interconversion of 1 and 8. Fig. 10 shows such a possible rotational path which passes through several minima.

It should be stressed that this is only one of the possible rotational paths since this complex is quite flexible. During the optimization we have obtained nineteen structures for the Zn-complex (Fig. 8). The overall shape of these molecules is dependent on the combined effects of such factors as the arrangement of dioxolane groups and distances between the phenyl rings. The conformational flexibility of dioxolane and other five-membered ring molecules is a very well-known fact. Therefore, in addition to the rotations of dioxolane ring around the N28–C33 (N72–C77) and C33–C36 (C77–C80) bonds it was important to consider pseudorotational motions. In this way, we obtained, for example, two additional conformers of 1 and 8 (Fig. 8; see also Table 2S† for selected geometrical parameters of all Zn-complex conformers). The energy differences between 1, 1’, and 1″ molecules are rather small and do not exceed 3 kcal mol$^{-1}$. In the case of 8, 8′, and 8″ they are even smaller. Since the reported in literature values of the pseudorotation barrier for different oxolanes are rather small, probably a multitude of conformers coexists at room temperature. A similar difference in relative energies was found for two other conformers: 3 and 3′. However, as mentioned before, in contrast to 1, 1′, and 1″ or 8, 8′, and 8″, they differ in the mutual arrangement of aromatic rings. In higher energy conformer 3 these rings are closer to each other than in 3′.

In Table 5 methine protons H45 and H81 (Fig. 1) chemical shifts for all conformers which we found are reported. Our calculations show that the lowest energy forms of the zinc initiator (1, 1′, 1″, 5, 8, 8′, and 8″) have both dioxolane arms closed. However, the comparison of experimental and calculated 1H chemical shifts may suggest rather the presence of some half-opened or fully opened structures in solution. In the opened 3, 3′, 11, and 12 forms the chemical shifts for H45 and H81 have the values of 5.21–5.42 ppm. For half-opened molecules 2, 2′, 2″ signals in the similar range (5.18–5.38 ppm) have been observed. Although, for other conformers H45 and/or H81 chemical shifts have larger values, nevertheless, their presence in solution cannot be ruled out.

Conclusions
In summary, four Mg, Zn, and Ca complexes of aminophenolate ligands with a hemilabile (flexible) segment were described. The experimental data verified by theoretical
Table 5 Chemical shift (ppm) relative to TMS for the Ca-, Mg-, and Zn-complexes calculated at the WP04/6-31G(d,p)//TPSS-D3/TZVPPD level of theory

<table>
<thead>
<tr>
<th></th>
<th>(\delta(H45))</th>
<th>(\delta(H81))</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Ca(tbpoa)}_2]])</td>
<td>5.70</td>
<td>5.70</td>
</tr>
<tr>
<td>([\text{Mg(tbpoa)}_2]])</td>
<td>6.45</td>
<td>6.45</td>
</tr>
<tr>
<td>([\text{Zn(tbpoa)}_2]])</td>
<td>5.21</td>
<td>5.21</td>
</tr>
</tbody>
</table>

studies suggest that lability of dioxolane fragment is essential to ensure a suitable structure of an active centre for zinc, which is not the case for the calcium complex. Under optimized conditions zinc bis(chelate)complex in the presence of alcohol demonstrates efficient activities for living ROP of lactides. The subtle changes observed in the calculated structure of the complex allowed for optimization of the reaction condition in order to improve the catalyst. Additionally these calculations can elucidate the low stereocontrol in the ROP of racemic lactide by complexes with prochiral ligands. Although homoleptic complexes are the most explored as initiators for ROP of cyclic esters, yet, the combination of homoleptic ones and external donors can provide an alternative way for catalysts design based on kinetically labile complexes.

Acknowledgements

The authors would like to thank the National Science Centre in Poland (Grants N204 200640 and N204 136339) and the Wroclaw Centre for Networking and Supercomputing (http://www.wcss.wroc.pl; grant no. 162 and no. 011) for support of this research.

Notes and references

Dalton Transactions Paper

6 For key references on β-diketiminate, see references:
(c) M. H. Chisholm, J. C. Huffman and K. Phomphrai, Dalton Trans., 2001, 3, 222;
(g) A. P. Dove, V. C. Gibson, E. L. Marshall, A. J. P. White and D. J. Williams, Dalton Trans., 2004, 570;
(p) M. H. Chisholm, J. Gallucci and K. Phomphrai, Inorg. Chem., 2004, 43, 6717; for aminoaminophenolate ligands, see references: (q) Ref. 4e; (r) Ref. 7d, magnesium; (s) Ref. 12a;

11 (a) Ref. 6g, amino/imino-phenolate ligands; (b) W. Lying and M. Haiyan, Dalton Trans., 2010, 39, 7897.

12 (a) Ref. 7d, magnesium; (b) J. Ejfler, S. Szafert, K. Mierzwicki, L. B. Jerzykiewicz and P. Sobota, Dalton Trans., 2008, 6556.

37 P. A. Baron and D. O. Harris, J. Mol. Spectrosc., 1974, 49, 70.