Open Access Article. Published on 17 September 2012. Downloaded on 1/10/2026 9:35:27 PM.

PCCP

View Article Online / Journal Homepage / Table of Contentsfor thisissue

Dynamic Article Links @)

Cite this: Phys. Chem. Chem. Phys., 2012, 14,15206-15213

WWW.ISC.org/pccp

PAPER

Rapid determination of entropy and free energy of mixtures
from molecular dynamics simulations with the two-phase

thermodynamic modelf

Pin-Kuang Lai, Chieh-Ming Hsieh and Shiang-Tai Lin*

Received 15th June 2012, Accepted 14th September 2012
DOI: 10.1039/c2cp42011b

The two-phase thermodynamic (2PT) model is generalized to determine the thermodynamic
properties of mixtures. In this method, the vibrational density of states (DoS), obtained from the
Fourier transform of the velocity autocorrelation function, and quantum statistics are combined
to determine the entropy and free energy from the trajectory of a molecular dynamics simulation.
In particular, the calculated DoS is decomposed into a solid-like and a gas-like component

through the fluidicity parameter, allowing for treatments for the anharmonic effects in fluids.
The 2PT method has been shown to provide reliable thermodynamic properties of pure
substances over the whole phase diagram with only about a 20 ps MD trajectory. Here we

show how the 2PT method can be used for mixtures with the same degree of accuracy and
efficiency. We have examined the 2PT determined excess Gibbs free energies of Lennard-Jones
(LJ) mixtures over a wide range of conditions (1 < 7% < 3,0.5 < P* < 2.5, 1 < ggp/oaa < 2,
and 1 < epp/eaa < 2), including the change of the off-diagonal LJ interactions. The 2PT

determined values are in good agreement with those from Widom insertion or thermodynamic
integration (TI). Our results suggest that the 2PT method can be a powerful method for
understanding thermodynamic properties in more complicated multicomponent systems.

1. Introduction

Molecular dynamics (MD) simulations are a powerful technique
for understanding the structural, energetic, dynamic, and equili-
brium properties of a system at the molecular level. However,
some physically significant properties, such as entropy and free
energy, normally cannot be obtained from the same MD simula-
tion. A separately designed simulation with specific algorithms or
techniques is often necessary for such properties. For example,
the Widom insertion,! one of the most renowned methods for
calculation of chemical potential, requires additional samplings
using a ghost particle. Unfortunately, the efficiency of Widom’s
test particle method deteriorates quickly at high system densities
because of the low fraction of successful insertions. While many
more sophisticated methods are developed for high density
systems, they are either not compatible with MD simulations
(e.g., overlapping distribution method, umbrella sampling,
etc.)>> or require specifically designed simulation paths
(e.g. thermodynamic integration).*
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Another class of methods®'° for determination of entropy
and free energy from MD simulations is based on the char-
acterization of vibrations within a system. Assuming that the
vibrations (i.e., normal modes or the density of states (DoS))
correspond to a series of independent harmonic oscillators, all
thermodynamic properties of the system can be calculated
based on the quantum statistics of harmonic vibrations. This
approach provides excellent properties for solids (e.g., the
Debye crystal)'! but becomes less accurate for liquids and
gases, where the diffusive and low frequency modes are highly
anharmonic. Despite these deficiencies, Karplus and Kushick®
showed that the entropy difference of a macromolecule in two
conformations can be obtained from the covariance matrix of
atom positions and the quasiharmonic approximations.

Recently, the effect of anharmonic modes on the thermo-
dynamic properties was addressed in the two-phase thermo-
dynamic (2PT) model.'? In this model, the DoS of a system,
determined from the Fourier transform of the velocity auto-
correlation function, is regarded as the supposition of a solid
component, which contains all the harmonic modes, and a gas
component, which considers all the anharmonic, diffusive
modes. The essence of 2PT is to provide a fluidicity parameter
for the gas/solid decomposition. Applying suitable statistical
weighting functions to the gas and solid components, it has
been shown that such a treatment of DoS can result in accurate
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absolute entropy and free energy of a variety of fluids (from
Lennard-Jonesium,'? to water,' carbon dioxide,'* and many
common organic solvents)'> from a short (about 20 ps) MD
trajectory. The efficiency and accuracy of this approach make
it a promising tool for understanding thermodynamic driving
forces in complicated systems, such as dendrimers,'®'® nano-
tubes,'*?° biomolecular systems,zl’24 etc.

Although the 2PT method has shown great success in a
variety of problems, the fundamental theory was developed
for pure fluids. Extension of the theory to mixtures* 27 has
not been validated. The goal of the present study is to examine
several possible approaches to determine the fluidicity para-
meter in mixtures. In pure fluids, this parameter is determined
based on the temperature, molar volume, and the zero frequency
intensity of the DoS. We find that for mixtures the molar
volume should be replaced by the partial molar volume of each
component. The excess Gibbs free energies thus obtained
for Lennard-Jones mixtures are in good agreement with
those from thermodynamic integration and Widom insertion.
This work provides the theoretical basis for the use of 2PT
in mixtures.

2. Method and theory

2.1 The vibrational density of state function

The vibrational density of state (DoS) function of component i
is defined as the mass weighted sum of velocity spectral density
from all atoms in the system,’

Si0) = =3 S mshw) (1)

where m; is the mass of atom j. The velocity spectral density
sf(zz) of atom j in the kth coordinate (k = Xx, y, and z in the
Cartesian coordinate) is determined from the square of the
Fourier transform of the velocities as

The DoS can also be calculated from the Fourier transform of
the velocity autocorrelation function (VAC).’

2.2 Thermodynamic properties of mixtures from two-phase
thermodynamic (2PT) model

The Two-Phase Thermodynamic (2PT) model'? of mixtures
defines that the DoS of component i, s‘f-‘(u), with 3N, degrees of
freedom consists of a gas-like and a solid-like portion.

Siv) = Siw) + Siw) A3)

where the gas-like diffusive component s$(v) corresponds to
3N§$ = 3f;N; degrees of freedom with f; being the gas fraction
of component i and the remainder, s7(v), describes a solid-like
part (non-diffusive) of component i. Therefore, there are 3N; —
3N% = 3N{1 — f;) solid-like degrees of freedom for component i.
The thermodynamic properties P; of the system are determined

from the individual DoS components with proper weighting
functions.'?

;] = Vsl/ Hol/ vy (v 14
Pl—o/d SS )W >+O/d SEWE)  (4)

where WHO(v) and W3 (v) are the weighting functions of a
harmonic oscillator and the corresponding gas part of component
i, respectively.

The decomposition of DoS is achieved by considering
the gas-component as a hard sphere fluid, whose density of
state is known
SEw) =SS (n) =2 (5)

i i 80.i 1/} 2

L+ [(?//N/

The solid component S3(v) is then determined by subtracting
s$(v) from the total density of state S{v). The DoS for the gas
component is completely determined using two parameters: sy ;
and f;. In order to include all the diffusive modes to the gas
component, o ; is set to be a zero frequency DoS value for
component 7, S;(0). This guarantees that the solid component
has no contribution to the diffusivity. The “fluidicity” factor f;
that determines the conceptual partition of each component
between solid and gas parts can be calculated from the
equation below (readers are referred to ref. 12 for derivation
details).

9 15 ) e 3.3 .
20 T3fi T —6A; i T — AT T4 6A i 242/ —2=0
(6)

where A; is some normalized diffusivity, whose value depends
on the temperature, volume, the particle mass and s ;.

250, (TkT\'? (N7 6\
A(T,Ni, Viymi,s0,) = 9N, ( " > V; n ™

In the case of pure fluids, V/; is the same as the system total
volume V. For a mixture, the system volume is shared by all
components, and the partial molar volume (V;) should be
used, i.e.,

V= Nin (3

To complete the 2PT model for mixtures, we need to specify
the weighting functions. Conventionally, the solid-like portion
is calculated from the quantum partition function, which gives
the harmonic oscillator weighting functions for energy, entropy,
and Helmholtz free energy as follows®

WHO () = % 4 # (92)

WHO() = # —In(1 — exp(—phv))  (9b)
B 1 — exp(—phv)

wiew =n( o) )

where § = 1/kT. For the gas-component, the weighting
functions are derived from the corresponding properties of
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hard sphere gas'?

Wi (v)=WiSw) =05 (10a)
HS
W (v) = W;:S(V) = %S}( (10b)
Wii(y) = W}fis(y) = W?’,S(u) — Wgs(y) (10c)

Once the decomposition of the DoS is done, the partial molar
thermodynamic properties of each component (without the
ideal mixture contribution) can be obtained

Fi=Eo+ ! / du[SS(W) WHO ) + SEW)WE ()] (11a)
0

Si—k / A[SS)WHOW) + SEWWEW)] (1)
0

A= o+ 7 [ QuISHWEOW) + SHoWE 0] (11e)
0

where E,; is the reference energy and takes the form
Eo; = E'° — B7'3N(1 - 0.5f) (12)

and the properties of the mixture become

Emixture = Ei xiEi (1321)
Smixture = Z’_ x,~§,~ —k Zf Xi In X; (13b)
Amixlure = Zi X,’/I,' +kT Z’_)C,' lnxi (130)

The second terms (x; In x;) on the right hand side of eqn (13b)
and (13c) ensures the proper composition dependence for
ideal mixtures.

2.3 The partial molar volume

The partial molar volume is needed (eqn (7)) for the determina-
tion of the fluidicity parameter in 2PT properties for a mixture.
In this work we examine three estimation methods for the
partial molar volume: (1) the Kirkwood—-Buff theory, (2) the
molecular size, and (3) the one-fluid approximation.

The Kirkwood-Buff (KB) theory®® provides a rigorous
method to determine partial molar volume from the radial
distribution function. According to the KB theory, the partial
molar volume of component i is

V.= %Bﬁ (14)
> p PP B

where p; = N,/V is the number density; B** stands for the
cofactor of the element B,; in the determinant |B|. The
elements of matrix B is defined as

B.g = puppGap + padap (15)

with d,s being the Kronecker delta function. G,z is the

Kirkwood-Buff integral (KBI) or the fluctuation integral®
Gy = / (g2 (r) — 1Jdnrdr (16)

0

where g,4(r) is the radial distribution function between compo-
nents o and 5. For a binary mixture, eqn (14) simplifies to
V B 1 + ,DB(GBB — GAB)
A=
n

(17a)

Vo — 1 4+ pa(Gaa — Gag) (17b)

n

where

N = pa T pg T paps(Gaa + Gpg — 2Gap) (18)

Although the KB theory provides a basis for the evaluation of
partial molar volume for any mixture, the KBI is found to
converge very slowly with separation distance r.** As a result,
a very long simulation trajectory and a very large simulation
box may be necessary to obtain a reliable converged value of
the KBI. To circumvent such problems, we also examined two
additional means for a simpler estimation of the partial molar
volume in eqn (8). The first is to assume that all particles
occupy the same volume regardless of its size (the one-fluid
approximation),'! in this case the partial molar volume is
assumed to be the molar volume

V=V =VIN (19)
It is expected that this approximation would fail when the size
of the particles in the mixture is very dissimilar. A somewhat
improved estimation for the partial molar volume is to assume
its proportionality to the molecular size, i.e.,

}
_ g;°
V=l v (20)
I E/ xj0;

where x; is the mole fraction of species i in the mixture, g; is the
atom diameter. The advantage of these approximations (eqn (19)
and (20)) is that the partial molar volume is estimated without
performing MD simulations.

3. Computational details

The molar excess entropy and Gibbs free energies of Lennard-
Jones (LJ) binary mixtures are used to examine the accuracy of
the two-phase (2PT) thermodynamic model. The interaction
potential E between two LJ particles is expressed through the
standard LJ-12-6 equation

G (G I

where r; is the separation distance between particles i and j,
and o; and ¢; are two parameters characterizing the size and
strength of interaction between LJ particles. The cross terms
between two different species are described through the Lorentz—
Berthelot combination rule,

(7 (0 + U_/j)/z (22)
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& = /e (1 — ki) (23)

where k;; is a binary interaction parameter for tuning unlike
species interactions. Open software LAMMPS?! is used for all
molecular dynamic simulations. Equimolar mixtures of binary
LJ particles (with a total of 1000 particles) are equilibrated under
constant temperature, pressure and the number of particles
(NPT) for 800 ps with a timestep of 8 fs. Additional 160 ps
was subsequently performed and the trajectory file was recorded
every 32 fs for the 2PT analysis. The Nosé-Hoover thermostat
and barostat time constants 0.1 ps and 1 ps, respectively, are
used. The nonbond cutoft used is 20 (A). All particles are
assumed to have the same mass of 39.94 (g mol ™).

The partial molar volume is estimated based on three
methods: the one-fluid approximation (eqn (19)), the mole-
cular size (eqn (20)), and the KB theory (eqn (17)). The RDF
needed in the KB theory is calculated from the final 160 ps
trajectory of the MD simulation. However, as noted pre-
viously, the direct use of the simulated RDF in the KBI results
in very slow convergence with distance r because of the long
range fluctuation in the RDF.*® Although the fluctuations may
be suppressed in NPT and NVT ensembles, our experience
shows that the uncertainty caused by finite simulation length
and finite system size also results in the slow convergence of
the Kirkwood-Buff integration. To circumvent this problem,
we fit the RDF to the following analytical expression,*? which
captures the main features of the RDF of the mixture of
Lennard-Jones particles.

>1 14 () 2 exp[—(ar* + b)]sin[(cr* 4 d)]

g(r) = +(r*) "% exp[—(gr* + )] sin[(kr* + 1)
<1 sexp[—(mrt +n)* (24)
where r* = r;/o;, r; is the distance between particles i and j;

a, b,c,d g h,k, [, m n and s are parameters adjusted to
reproduce the RDF determined from the MD trajectory. This
expression guarantees that the radial distribution function is
smooth and converges to 1 at long distances. The partial molar
volume is then obtained from eqn (17) with eqn (24) used for
g(r) (the integration is done for r = 20 A). As a validation,
we have checked the determined partial molar volume with
that determined from the change of the system volume with
composition (see Appendix for details). There is a good
agreement in the partial molar volume from both approaches.

Once the partial molar volume is determined, the fluidicity
parameter of the corresponding species is calculated from
eqn (6), and the determination of 2PT thermodynamic proper-
ties is the same as that for pure fluids.'? The excess Gibbs free
energy is calculated from the difference between the mixture
Gibbs free energy (by summing up the component contribu-
tions) and that of the ideal mixing of pure fluids under the
same temperature and pressure,

G = Z[- x,—(i,» + PVi)mixturc - Zixi(ﬁi + PK)purc (25)

In the present work, we focus on the comparison of the excess
determined from 2PT and those from TI found in the literature
or the Widom insertion method determined from open-source
molecular simulation program ms2.3>3

4. Results and discussion

A total of 32 sets of simulations of equimolar LJ mixtures is
carried out with varying interaction parameters and the simula-
tion conditions (see Table 1 for summary). The size and energy
parameters of component A are fixed (caoa = 3.405 A, EAA =
0.238 kcal mol™"), and the parameters of component B vary
from 1 < opp/oaa < 2, and 1< egp/ean <2 in order to study
the size and energy effects on the performance of 2PT. The
cross term parameter k;; is zero in all cases; however, for case
17 the value of k; is changed from —0.9 to 0.3 to study the
effect of the off-diagonal LJ interactions. The simulation
conditions range from 1 < T* < 3,0.5 < P* < 2.5, covering
the gas, liquid and supercritical regions. The 2PT excess Gibbs
free energies are determined using three different estimates for
the partial molar volume: (1) the one-fluid approximation
(eqn (19)), (2) the molecular size (eqn (20)), and (3) the KB
theory (eqn (14)).

4.1 The density of state distribution

Fig. 1 illustrates the DoS of a LJ binary mixture (id 4 in
Table 1) and its decomposition into different contributions.
Because the DoS is additive from contributions of atoms
(eqn (1)), it can be easily separated into contributions from
each component in the mixture. The 2PT can then be used to
decompose the DoS of each species into a gas (indicated by S®)

Table 1 Simulation conditions and interactions parameters of equimolar
mixtures

id T T (K) P P (atm) opB/oas” epp/ean”
1 1 119.8 0.5 206.27 1.25 1

2 1 119.8 0.5 206.27 1.5 1

3 1 119.8 0.5 206.27 1.85 1

4 1 119.8 0.5 206.27 2 1

5 2 240.0 1.2 495.43 1.25 1

6 2 240.0 1.2 495.43 1.5 1

7 2 240.0 1.2 495.43 1.75 1

8 2 240.0 1.2 495.43 2 1

9 3 359.0 2.5 1033.305 1.5 1

10 3 359.0 2.5 1033.305 1.75 1

11 3 359.0 2.5 1033.305 2 1

12 3 359.0 2.5 1033.305 1 1

13 2 240.0 2.5 1033.305 1 1

14 2 240.0 2.5 1033.305 1 1.25
15 2 240.0 2.5 1033.305 1 1.5
16 2 240.0 2.5 1033.305 1 1.75
17 2 240.0 2.5 1033.305 1 2

18 2 240.0 2.5 1033.305 1.125 1

19 2 240.0 2.5 1033.305 1.125 1.25
20 2 240.0 2.5 1033.305 1.125 1.5
21 2 240.0 2.5 1033.305 1.125 1.75
22 2 240.0 2.5 1033.305 1.125 2

23 2 240.0 2.5 1033.305 1.5 1

24 2 240.0 2.5 1033.305 1.5 1.25
25 2 240.0 2.5 1033.305 1.5 1.5
26 2 240.0 2.5 1033.305 1.5 1.75
27 2 240.0 2.5 1033.305 1.5 2
28 2 240.0 1.2 495.43 1.5 1

29 2 240.0 1.2 495.43 1.5 1.25
30 2 240.0 1.2 495.43 1.5 1.5
31 2 240.0 1.2 495.43 1.5 1.75
32 2 240.0 1.2 495.43 1.5 2

@ Reduced temperature 7% = kT/ean and pressure P*=Poan’/ean.
b 6an = 3.405 (A) and gx =0.238 (kcal mol™")).
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Fig. 1 Tllustration of the density of state decomposition of an equimolar
LJ mixture. Each component can be partitioned into gas (S%) and solid (S°)
contributions. The total density of state of the system (S'") is the super-
position of each contribution. The state point of this plot corresponds to
simulation 4 in Table 1. Red curves (or light grey curves in print) stands for
properties of component A (S,), and blue curves (or grey curves in print)
are corresponding properties of component B (Sg).

and a solid (indicated by S°*) component. The higher value of
the zero frequency intensity of component A (SA(0)) indicates
that it is more diffusive than B because of its smaller size
compared to B. The results here demonstrate that the 2PT
method can nicely decompose the DoS to various components
for further property calculations.

4.2 Thermodynamic properties for mixtures from 2PT model

The 2PT determined excess Gibbs free energies are compared to
those determined by thermodynamic integration®>® (Fig. 2 and
Table S1 in the ESIt). The 2PT properties are determined based
on three estimates of the partial molar volume. The KB method
provides the most accurate estimate to the partial molar volume
(see Appendix for further details). The 2PT determined excess
Gibbs free energies based on KB partial molar volume (Fig. 2c)
are in good agreement with results from TI for mixtures with very
different sizes and energetic interactions. Discernible discrepancies
are observed when the sizes of the two species are most different
(i.e., ogp/oan = 2). The one-fluid approximation (Fig. 2a
assuming molar volume to be the same as partial molar volume)
results in more negative deviations as the size ratio (ogg/Taa)
increases. On the other hand, estimating the partial molar volume
with the particle size (Fig. 2b) leads to results that are in comparable
accuracy to that from the KB method. In most cases, the molecular
size method leads to more positive values in excess Gibbs free
energy than those from the KB method. The results show that the
description of partial molar volume is important for 2PT properties,
especially for highly asymmetric mixtures. Furthermore, the use of
molecular size may be an efficient approach for 2PT properties
without much loss of its accuracy.

4.3 Energy-cross term effect of 2PT model

To examine whether the 2PT method can capture correct
thermodynamic properties for specific cross interactions, we
performed additional simulations using simulation parameters

02} @ -

G/RT (one-fluid)
1<)
N
T
L

®
-0.6 | Op @ J
06 04 -0.2 0 0.2
G™/RT (TI)
0.2 ™ 4
S o} J
= &
E ®
) 052 '
= Q
£ 04l !
4]
0.6 | .
06 04 -0.2 0 0.2
G®™/RT (TI)
02} © .
2 0f .
(=3
£
g 02} 5 -
= 25
& -04} o) .
0.6 | .
06 04 -0.2 0 0.2

G™/RT (TI)

Fig. 2 Comparison of excess Gibbs free energy of equimolar
LJ mixtures from 2PT with three different methods to that from
thermodynamic integration (TT).3>3¢ (a) one-fluid. (b) molecular size.
(c) Kirkwood—Buff theory (squares: particles are equal in size but with
different interaction parameters; circles: particles are different in size
but having the same interactions; triangles: both size and interaction
parameters are different).

from simulation 17 (see Table 1) but with different values of k;
(eqn (23)): —0.9, —0.7, —0.5, —0.1, 0.1, 0.3. (Note that phase
separation is observed when the value of k;; is greater than 0.5.
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Fig. 3 The excess Gibbs free energy of equimolar mixtures from the
2PT model (circle) and from Widom’s particle insertion method (square)
for simulation 17 but using different cross interaction parameters k;;.

Therefore, larger values of k;; are not considered.) Fig. 3 shows
the result of excess Gibbs free energy from the 2PT model with
different k;. For comparison, the excess Gibbs free energies
were determined based on the Widom insertion method using
the open-source molecular simulation program ms2.3*3* It can
be seen that the results from 2PT are in close agreement with
those from Widom’s method. The 2PT model can therefore
correctly capture the change in thermodynamic properties in
the mixture due to specific cross interactions.

4.4 Fluidicity parameter and partial molar volume in binary
mixtures

The fluidicity and partial molar volume are two important
quantities in the 2PT method for calculation of thermo-
dynamic properties in a mixture. Their values from the three
different methods discussed above are listed in Table S2 of the
ESIL.¥ In one-fluid approximation, the two components in
the mixture share the same fluidicity and molar volume. For
the molecular size and Kirkwood—Buff approaches, the partial
molar volume of each component differs significantly when the
ratio of particle diameters is away from unity. One-fluid
approximation fails to consider the size effect as expected.
As a consequence, the fluidicity from one-fluid approximation
is very different from the other two methods. This deviation
affects thermodynamic properties significantly, as given in the
previous section.

4.5 Convergence of 2PT properties

One outstanding feature of the 2PT model is its need for very
short sampling time. Fig. 4a and b show the 2PT entropy for
each component and the mixture evaluated using different
lengths of a MD trajectory. Fig. 4a corresponds to simulation
4 in Table 1. While the excess entropy of the mixture is
converged in about 20 ps, it is noteworthy that the partial
molar excess entropy of each component may take a longer
time to converge. In simulation 4, component A is smaller
than component B (ogg/oaa = 2), and the time needed for its
entropy to converge is found to be longer. The fluidicity

0 20 40 60 80 100 120 140 160
time (ps)

4
0 20 40 60 80 100 120 140 160
time (ps)

Fig. 4 The partial molar (circles and squares) and molar (diamonds)
entropy of a binary equimolar LJ mixture determined using different
lengths of a trajectory from simulation 4 in Table 1 (a) and another
simulation with a change of the diameter of component A to gaa =
5.448 A (b).

parameters of these two components are 0.56 (A) and 0.25
(B), respectively. The significantly larger value of component
A indicates that it is in a state more similar to a gas. The longer
time for convergence in this case is a result of the time needed
for enough collisions to establish a converged DoS. Fig. 4b
shows another simulation using a larger diameter for compo-
nent A (oaa = 5.448 (A)). In this case, the fluidicity parameters
are 0.35 and 0.28 for components A and B, respectively. With
both components having a smaller fraction of the gas-like
component, the convergence of both the excess and the partial
molar entropies is observed within 20 ps. Thus the convergence
of 2PT properties in mixtures is quite similar to that found in
pure fluids.'?

5. Conclusion

In the present work, we validated the use of the 2PT method
for determination of thermodynamic properties in mixtures of
Lennard-Jones particles. In this method the vibrational density of
states of the system is decomposed into a solid-like component,
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which is treated as a series of harmonic oscillators, and a gas-
like component, which is considered as a hard sphere gas. The
2PT theory provides a way to determine the fraction, fluidicity
parameter, of the gas-like component. For mixtures, the partial
molar volume of each component in the mixture is found to be
important for the determination of the fluidicity parameter. We
examined the accuracy of 2PT properties based on three
different estimates of the partial molar volume. The KB theory
provides the most accurate estimation of the partial molar
volume, and hence most accurate 2PT excess Gibbs free energy;
however, it is rather demanding on the accuracy/convergence
in the long-range tail of the radial distribution function. The
one-fluid approximation (assuming the partial molar volume to
be the same as the molar volume) provides reasonable 2PT
properties for mixtures consisting of particles with similar sizes;
however, the accuracy deteriorates rapidly as the difference in
the particle sizes increases. One-fluid approximation is only
applicable when the LJ size parameter difference (ogp/oaa) 1S
less than 10%, which agrees with previous observation.’” We
found that by assuming the partial molar volume to be propor-
tional to the volume of the constituent particles the 2PT method
can also provide excess Gibbs free energy with satisfactory
accuracy. We conclude that estimation of partial molar volume
from the size of molecules is a simple yet accurate approach for
evaluation of 2PT thermodynamic properties.

Appendix: Comparison of methods for estimation of
partial molar volume

The partial molar volume is defined as the increment in the total
system volume when a component is added to the mixture
under constant temperature and pressure, i.e.,

_ ONV)
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Fig. A1 The variation of partial molar volume with mixture compo-
sition for simulation 7 in Table 1. Solid line is the total volume;
long dash lines are the partial molar volumes determined from the
Redlich—Kister expansion (eqn (A2)); short dashed lines are those
based on molecular size approximation (eqn (20)); circles are from
Kirkwood-Buff theory (eqn (14)).

One typical approach to determine the partial molar volume is
to determine the molar volume of the mixture at different
compositions. These data are used to fit a Redlich—Kister type
of expansion (eqn (A2)) and the partial molar volume can
then be obtained from eqn (Al) (see, for example, ref. 38
for details).

_ 6 ;
Amix V = x1X2 Zi:O ai(x) — x2) (A2)

To validate the partial molar volume obtained from the KB
theory, we determined the values based on a set of simulations
at compositions (x4 = 0.0,0.1,...,1.0). The results are shown
in Fig. Al. It can be seen that the partial molar volume from
the KB theory (open circles) is in close agreement with that
from eqn (Al). Also shown in Fig. Al are the partial molar
volumes estimated from the one-fluid approximation
(eqn (19)) and the molecular size (eqn (20)) approximation.
The one-fluid approximation (i.e., the total molar volume)
leads to a composition independent partial molar volume that
may deviate significantly from the exact values. The molecular
size approximation leads to a somewhat improved estimation,
with the tendency properly captured (e.g., the partial molar
volume of component B being larger than that of component A).
Largest deviation is observed for the large particle in the
infinite dilution limit.
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