Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 26, 2020
Previous Article Next Article

Small molecule additive for low-power accumulation mode organic electrochemical transistors

Author affiliations

Abstract

Low-voltage operation in accumulation mode organic electrochemical transistors (OECTs) is essential for biosensing applications and for potential use with low-voltage portable power supplies. Here, we employ a small molecule additive, dodecylbenzenesulfonate (DBSA), by adding it to the electrolyte in OECTs to improve the device performance. We find that DBSA lowers the operation voltage, increases the ON current, and increases the transconductance of the device. Such improvements are found for a range of p-type polymers including P3HT, PBTTT and DPPT-TT which have different electronic and structural properties. To investigate the device operational mechanism modulated by DBSA, we directly probe the molecular structure changes of three polymers upon charge injection (i.e. polaron formation) and correlate them to polaron density and OECT performance. We find that the electrolyte mixture (containing DBSA) enhances the electrochemical doping of the polymer by lowering the onset of oxidation and allowing the generation of a higher polaron density. For example, for P3HT the VON value decreases to 0.05 V, the ON current increases by ∼3 times, and the transconductance (gm) increases to 4 mS, which is, to the best of our knowledge, the highest transconductance of P3HT OECT reported. These results demonstrate a simple, but effective way of using a small molecule additive, such as DBSA, and a possibility to utilise otherwise unsuitable polymers with deep highest occupied molecular orbital (HOMO) levels, for low-power accumulation mode OECTs.

Graphical abstract: Small molecule additive for low-power accumulation mode organic electrochemical transistors

Back to tab navigation

Supplementary files

Article information


Submitted
02 May 2020
Accepted
02 Jun 2020
First published
03 Jun 2020

This article is Open Access

J. Mater. Chem. C, 2020,8, 8846-8855
Article type
Paper

Small molecule additive for low-power accumulation mode organic electrochemical transistors

J. Nightingale, C. Pitsalidis, A. Pappa, E. Tan, K. Stewart, R. M. Owens and J. Kim, J. Mater. Chem. C, 2020, 8, 8846
DOI: 10.1039/D0TC02149K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements