Issue 39, 2019

The role of excitons in 3D and 2D lead halide perovskites

Abstract

The success of lead halide perovskites as active materials in solar cells and light-emitting diodes (LEDs) is often traced back to the unique properties of their optical excitations. At room temperature and under all device operating conditions, photoexcitation of perovskites creates free carriers and not bound excitons, even in compounds with exciton binding energy several times larger than room temperature thermal energy. As a consequence, absorbed photons can be readily converted in an electric current of electrons and holes to be collected at perovskite edges, leading to efficient solar cells. A thorough review of the large body of experimental evidence on perovskite photophysics however leads to quite a different picture, where excitons are anything but negligible. First of all, they are responsible for the very large absorption coefficients close to the band gap, which can reach as much as 105 cm−1. The magnitude of such an effect depends on the exciton binding energy, whose value proved to be elusive and tricky to assess. Second and more surprising, excitons are responsible for most light emission in perovskites, in spite of being greatly outnumbered by free carriers. The resulting dynamics of optical emission is governed by the ratio between exciton formation through pairing of free carriers and exciton radiative recombination. When the importance of excitons is taken into account, new avenues in lead halide perovskites appear more clearly, particularly the rise of layered, bidimensional (2D) perovskites, where excitonic effects are further enhanced, without compromising the fact that free carriers are the majority of photexcitations.

Graphical abstract: The role of excitons in 3D and 2D lead halide perovskites

Article information

Article type
Review Article
Submitted
05 Aug 2019
Accepted
18 Sep 2019
First published
19 Sep 2019

J. Mater. Chem. C, 2019,7, 12006-12018

The role of excitons in 3D and 2D lead halide perovskites

D. Marongiu, M. Saba, F. Quochi, A. Mura and G. Bongiovanni, J. Mater. Chem. C, 2019, 7, 12006 DOI: 10.1039/C9TC04292J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements