Jump to main content
Jump to site search

Issue 7, 2018
Previous Article Next Article

Thermally sensitive, adhesive, injectable, multiwalled carbon nanotube covalently reinforced polymer conductors with self-healing capabilities

Author affiliations

Abstract

Self-healable conductivity is an important feature of electronic skin, which is highly desirable for next-generation wearable devices. However, the preparation of conductors with good mechanical properties combining thermal sensitivity, adhesion, and injectability as well as self-healing capability remains a great challenge. Herein, a series of self-healing conductors were fabricated through random copolymerization of butyl methacrylate (BMA), lauryl methacrylate (LMA) and undecylenyl alcohol modified multi-walled carbon nanotubes (mMWCNTs). The covalent binding between mMWCNTs and polymers avoids the aggregation and uneven dispersion of MWCNTs in the polymer matrix. The resulting conductors possess electrical conductivity (about 11 S m−1) and high mechanical performance (Young's modulus: ∼10 MPa and tensile strength: ∼0.89 MPa) as well as high mechanical and electrical self-healing efficiency (>94% of mechanical strength and >98% of conductivity). More importantly, the composites also exhibit other unique features, including adhesive, injectable, and sensing capability. This work provides new routes to design and fabricate self-healing conductive materials for applications in next-generation wearable devices.

Graphical abstract: Thermally sensitive, adhesive, injectable, multiwalled carbon nanotube covalently reinforced polymer conductors with self-healing capabilities

Back to tab navigation

Supplementary files

Publication details

The article was received on 27 Nov 2017, accepted on 15 Jan 2018 and first published on 15 Jan 2018


Article type: Paper
DOI: 10.1039/C7TC05432G
J. Mater. Chem. C, 2018,6, 1746-1752

  •   Request permissions

    Thermally sensitive, adhesive, injectable, multiwalled carbon nanotube covalently reinforced polymer conductors with self-healing capabilities

    Q. Zhang, L. Liu, C. Pan, D. Li and G. Gai, J. Mater. Chem. C, 2018, 6, 1746
    DOI: 10.1039/C7TC05432G

Search articles by author

Spotlight

Advertisements