Issue 38, 2017

Facile zinc oxide nanowire growth on graphene via a hydrothermal floating method: towards Debye length radius nanowires for ultraviolet photodetection

Abstract

Vertically aligned zinc oxide nanowires on graphene (ZnO-NW/graphene) heterojunction nanohybrids combine the superior sensitivity of crystalline ZnO-NWs with high charge mobility of graphene to provide an ideal platform for high-performance detectors and sensors. Controlling the ZnO-NW microstructure and ZnO-NW/graphene interface is of primary importance for the device performance. This work explores floating hydrothermal growth of ZnO-NWs on seedless and ZnO seeded graphene, and investigates the effects of the microstructure and interface on the performance of ZnO-NW/graphene ultraviolet (UV) detectors. It has been found that the ZnO seed layer facilitates the growth of a dense ZnO-NW array with a NW radius approaching the Debye length. In contrast, the seedless process results in a lower NW areal density and a larger NW diameter on the order of sub-to-few micrometers. Consequently, higher UV responsivity up to 728 A W−1 was obtained in the former. However, a strong charge trapping effect was also observed, which is attributed to the poorer crystallinity of the ZnO-NWs originating from the ZnO seed layer. These results shed light on the importance of controlling the microstructure and interface towards high-performance ZnO-NW/graphene nanohybrid optoelectronics.

Graphical abstract: Facile zinc oxide nanowire growth on graphene via a hydrothermal floating method: towards Debye length radius nanowires for ultraviolet photodetection

Article information

Article type
Paper
Submitted
24 Jul 2017
Accepted
08 Sep 2017
First published
08 Sep 2017

J. Mater. Chem. C, 2017,5, 10087-10093

Facile zinc oxide nanowire growth on graphene via a hydrothermal floating method: towards Debye length radius nanowires for ultraviolet photodetection

B. Cook, Q. Liu, J. Liu, M. Gong, D. Ewing, M. Casper, A. Stramel and J. Wu, J. Mater. Chem. C, 2017, 5, 10087 DOI: 10.1039/C7TC03325G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements