Jump to main content
Jump to site search

Issue 9, 2016
Previous Article Next Article

Thermal stability and electrical conductivity of carbon-enriched silicon oxycarbide

Author affiliations

Abstract

Silicon oxycarbide (SiOC) is an interesting polymer-derived system that can be tailored to embody many different properties such as lightweight, electrochemical activity, and high temperature stability. One intriguing property that has not been fully explored is the electrical conductivity for the carbon-rich SiOC compositions. In this study, a carbon-rich SiOC system is created based on the crosslinking and pyrolysis of polyhydromethylsiloxane (PHMS) and divinylbenzene (DVB) mixed precursors. The carbon-rich nature can effectively delay SiOC phase separation and crystallization into SiO2 and SiC during pyrolysis. In an oxidizing air atmosphere, the SiOC materials are stable up to 1000 °C with <0.5 wt% weight loss. Before the onset of electrical conductivity drop at ∼400 °C, the material has electrical conductivity as high as 4.28 S cm−1. In an inert argon atmosphere, the conductivity is as high as 4.64 S cm−1. This new semi-conducting behavior with high thermal stability presents promising application potential for high temperature MEMS devices, protective coatings, and bulk semi-conducting components that must endure high temperature conditions.

Graphical abstract: Thermal stability and electrical conductivity of carbon-enriched silicon oxycarbide

Back to tab navigation

Article information


Submitted
06 Jan 2016
Accepted
27 Jan 2016
First published
28 Jan 2016

This article is Open Access

J. Mater. Chem. C, 2016,4, 1829-1837
Article type
Paper

Thermal stability and electrical conductivity of carbon-enriched silicon oxycarbide

K. Lu, D. Erb and M. Liu, J. Mater. Chem. C, 2016, 4, 1829
DOI: 10.1039/C6TC00069J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements